Skip to main content

Advertisement

Log in

A Generalized Series-Connected Multilevel Inverter (MLI) Based on Reduced Power Electronic Devices for Symmetrical/Asymmetrical Sources

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Multilevel inverter (MLI) has grown rapidly in recent years to achieve higher voltage levels, lower voltage stress of the power switches, and lower harmonic distortion of the inverter voltage. The proposed work emphasizes the design of a generalized multilevel inverter using symmetrical and asymmetrical DC sources at the input. The merit of the proposed MLI can efficiently reduce the power electronic devices to produce the output voltage and generate seven-level using 7 power switches, whereas generating 11, 13, and 15-level using ten power switches only. Proposed MLI can be expanded in a cascaded fashion, reducing complexity, and size and thus significantly improving inverter cost and performance. With some newly developed topologies, a wide range of comparisons are made in order to prove the performance of the proposed MLI. Besides, the total standing voltage and the level-to-switch ratio are estimated to show the effectiveness of the proposed inverter further, and the parameters are compared with the newly developed MLI topologies. A multicarrier pulse width method, as well as a low-frequency modulation technique, is adopted to generate the desired gate pulses of the IGBT switches using the DSPACE-1103-based controller. A laboratory prototype of the proposed seven-level, 11-level, 13-level, and 15-level inverters is developed, and the experimental results of the MLIs at different loading or voltage conditions are presented. Further, the inverter losses, efficiency, and the %THD are also analyzed and compared with the other topologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Kiltie, O.: New type of D-C TO A-C vibrator inverter. Trans. Am. Inst. Electr. Eng. 59(4), 245–248 (1940). https://doi.org/10.1109/T-AIEE.1940.5058125

    Article  Google Scholar 

  2. Franquelo, L.G.; Rodriguez, J.; Leon, J.I.; Kouro, S.; Portillo, R.; Prats, M.A.M.: The age of multilevel converters arrives. IEEE Ind. Electron. Mag. 2(2), 28–39 (2008). https://doi.org/10.1109/MIE.2008.923519

    Article  Google Scholar 

  3. Mahato, B.; Jana, K.C.; Thakura, P.R.: Constant V / f control and frequency control of isolated winding induction motor using nine-level three-phase inverter. Iran. J. Sci. Technol. Trans. Electr. Eng. 6(1), 1–13 (2018). https://doi.org/10.1007/s40998-018-0064-6

    Article  Google Scholar 

  4. Jha, K.K.; Mahato, B.; Prakash, P.; Jana, K.C.: Hardware implementation of single phase power factor correction system using micro-controller. Int. J. Power Electron. Drive Syst. 7(3), 790–799 (2016). https://doi.org/10.11591/ijpeds.v7.i3.pp790-799

    Article  Google Scholar 

  5. Mahato, B.; Raushan, R.; Jana, K.C.: Modulation and control of multilevel inverter for an open-end winding induction motor with constant voltage levels and harmonics. IET Power Electron. 10(1), 71–79 (2017). https://doi.org/10.1049/iet-pel.2016.0105

    Article  Google Scholar 

  6. Mukherjee, A.; Mahato, B.; Sinha, A.; Jana, K.C.: Comparative performance analysis of PV based grid-tied single phase asymmetrical multilevel inverter using different PWM techniques. J. Electr. Eng. 17(1), 132–141 (2017)

    Google Scholar 

  7. Kumar, N.; Saha, T.K.; Dey, J.: Multilevel inverter (MLI)-based stand-alone photovoltaic system: modeling, analysis, and control. IEEE Syst. J. 1, 1–7 (2019). https://doi.org/10.1109/jsyst.2019.2900485

    Article  Google Scholar 

  8. Lai, J.S.; Peng, F.Z.: Multilevel converters - a new breed of power converters. IEEE Trans. Ind. Appl. 32(3), 509–517 (1996). https://doi.org/10.1109/28.502161

    Article  Google Scholar 

  9. Malinowski, M.; Gopakumar, K.; Rodriguez, J.; Pérez, M.A.: A survey on cascaded multilevel inverters. IEEE Trans. Ind. Electron. 57(7), 2197–2206 (2010). https://doi.org/10.1109/TIE.2009.2030767

    Article  Google Scholar 

  10. Jing, H.; Corzine, K.A.: Extended operation of flying capacitor multilevel inverters. IEEE Trans. Power Electron. 21(1), 140–147 (2006). https://doi.org/10.1109/TPEL.2005.861108

    Article  Google Scholar 

  11. Nabae, A.; Takahashi, I.; Akagi, H.: A new neutral-point-clamped PWM inverter. IEEE Trans. Ind. Appl. (1981). https://doi.org/10.1109/TIA.1981.4503992

    Article  Google Scholar 

  12. Reza Ahrabi, R.; Farakhor, A.; Najafi Ravadanegh, S.; Ardi, H.: Symmetric and asymmetric transformer based cascaded multilevel inverter with minimum number of components. IET Power Electron. 8(6), 1052–1060 (2015). https://doi.org/10.1049/iet-pel.2014.0378

    Article  Google Scholar 

  13. Rodríguez, J.; Lai, J.S.; Peng, F.Z.: Multilevel inverters: a survey of topologies, controls, and applications. IEEE Trans. Ind. Electron. 49(4), 724–738 (2002)

    Article  Google Scholar 

  14. Saeedian, M.; Adabi, J.; Hosseini, S.M.: Cascaded multilevel inverter based on symmetric–asymmetric DC sources with reduced number of components. IET Power Electron. 10(12), 1468–1478 (2017). https://doi.org/10.1049/iet-pel.2017.0039

    Article  Google Scholar 

  15. Agrawal, R.; Jain, S.: Multilevel inverter for interfacing renewable energy sources with low/medium- and high-voltage grids. IET Renew. Power Gener. 11(14), 1822–1831 (2017). https://doi.org/10.1049/iet-rpg.2016.1034

    Article  Google Scholar 

  16. Alishah, R.S.; Hosseini, S.H.; Babaei, E.; Sabahi, M.: Optimal design of new cascaded Switch-Ladder multilevel inverter structure. IEEE Trans. Ind. Electron. 64(3), 2072–2080 (2017). https://doi.org/10.1109/TIE.2016.2627019

    Article  Google Scholar 

  17. Samadaei, E.; Gholamian, S.A.; Sheikholeslami, A.; Adabi, J.: An envelope type (E-Type) module: asymmetric multilevel inverters with reduced components. IEEE Trans. Ind. Electron. 63(11), 7148–7156 (2016). https://doi.org/10.1109/TIE.2016.2520913

    Article  Google Scholar 

  18. Gautam, S.P.; Gupta, S.; Sahu, L.K.: Reduction in number of devices for symmetrical and asymmetrical multilevel inverters. IET Power Electron. 9(4), 698–709 (2016). https://doi.org/10.1049/iet-pel.2015.0176

    Article  Google Scholar 

  19. Babaei, E.; Farhadi Kangarlu, M.; Sabahi, M.: “Extended multilevel converters: an attempt to reduce the number of independent DC voltage sources in cascaded multilevel converters. IET Power Electron. 7(1), 157–166 (2014). https://doi.org/10.1049/iet-pel.2013.0057

    Article  Google Scholar 

  20. Farhadi Kangarlu, M.; Babaei, E.: Cross-switched multilevel inverter: an innovative topology. IET Power Electron. 6(4), 642–651 (2013). https://doi.org/10.1049/iet-pel.2012.0265

    Article  Google Scholar 

  21. Babei, E.; Hosseini, S.H.: New cascaded multilevel inverter topology with minimum number of switches. Energy Convers. Manag. 50(11), 2761–2767 (2009). https://doi.org/10.1109/TENCON.2010.5686368

    Article  Google Scholar 

  22. Ounejjar, Y.; Al-haddad, K.; Grégoire, L.: Packed U cells multilevel converter topology: theoretical study and experimental validation. IEEE Trans. Ind. Electron. 58(4), 1294–1306 (2011)

    Article  Google Scholar 

  23. Babaei, E.; Gowgani, S.S.: Hybrid multilevel inverter using switched capacitor units. IEEE Trans. Ind. Electron. 61(9), 4614–4621 (2014). https://doi.org/10.1109/TIE.2013.2290769

    Article  Google Scholar 

  24. Gupta, K.K.; Jain, S.: A novel multilevel inverter based on switched DC sources. IEEE Trans. Ind. Electron. 61(7), 3269–3278 (2014). https://doi.org/10.1109/TIE.2013.2282606

    Article  Google Scholar 

  25. Babaei, E.; Laali, S.; Alilu, S.: Cascaded multilevel inverter with series connection of novel H-bridge basic units. IEEE Trans. Ind. Electron. 61(12), 6664–6671 (2014). https://doi.org/10.1109/TIE.2014.2316264

    Article  Google Scholar 

  26. Boora, K.; Kumar, J.: General topology for asymmetrical multilevel inverter with reduced number of switches. IET Power Electron. 10(15), 2034–2041 (2017). https://doi.org/10.1049/iet-pel.2016.1011

    Article  Google Scholar 

  27. Babaei, E.; Alilu, S.; Laali, S.: A new general topology for cascaded multilevel inverters with reduced number of components based on developed H-bridge. Ind. Electron. IEEE Trans. 61(8), 3932–3939 (2014). https://doi.org/10.1109/TIE.2013.2286561

    Article  Google Scholar 

  28. Alishah, R.S.; Nazarpour, D.; Hosseini, S.H.; Sabahi, M.: Reduction of power electronic elements in multilevel converters using a new cascade structure. IEEE Trans. Ind. Electron. 62(1), 256–269 (2015)

    Article  Google Scholar 

  29. Mokhberdoran, A.; Ajami, A.: Symmetric and asymmetric design and implementation of new cascaded multilevel inverter topology. IEEE Trans. Power Electron. 29(12), 6712–6724 (2014). https://doi.org/10.1109/TPEL.2014.2302873

    Article  Google Scholar 

  30. Gupta, K.K.; Jain, S.: Multilevel inverter topology based on series connected switched sources. IET Power Electron. 6(1), 164–174 (2013). https://doi.org/10.1049/iet-pel.2012.0209

    Article  Google Scholar 

  31. Arun, N.; Noel, M.M.: Crisscross switched multilevel inverter using cascaded semi-half-bridge cells. IET Power Electron. 11(1), 23–32 (2018). https://doi.org/10.1049/iet-pel.2016.0644

    Article  Google Scholar 

  32. Samadaei, E.; Sheikholeslami, A.; Gholamian, S.A.; Adabi, J.: A square T-type (ST-Type) module for asymmetrical multilevel inverters. IEEE Trans. Power Electron. 33(2), 987–996 (2018). https://doi.org/10.1109/TPEL.2017.2675381

    Article  Google Scholar 

  33. Lee, S.S.; Sidorov, M.; Lim, C.S.; Idris, N.R.N.; Heng, Y.E.: Hybrid cascaded Multilevel inverter (HCMLI) with improved symmetrical 4-level submodule. IEEE Trans. Power Electron. 33(2), 932–935 (2018). https://doi.org/10.1109/TPEL.2017.2726087

    Article  Google Scholar 

  34. Lee, S.S.: Single-stage switched-capacitor module (S3CM) topology for cascaded multilevel inverter. IEEE Trans. Power Electron. 33(10), 8204–8207 (2018). https://doi.org/10.1109/TPEL.2018.2805685

    Article  Google Scholar 

  35. Lee, S.S.; Sidorov, M.; Idris, N.R.N.; Heng, Y.E.: A symmetrical cascaded compact-module multilevel inverter (CCM-MLI) with pulsewidth modulation. IEEE Trans. Ind. Electron. 65(6), 4631–4639 (2018). https://doi.org/10.1109/TIE.2017.2772209

    Article  Google Scholar 

  36. Gautam, S.P.; Kumar, L.; Gupta, S.: Single-phase multilevel inverter topologies with self-voltage balancing capabilities. IET Power Electron. 11(5), 844–855 (2018). https://doi.org/10.1049/iet-pel.2017.0401

    Article  Google Scholar 

  37. Alishah, R.S.; Hosseini, S.H.; Babaei, E.; Sabahi, M.: A new general multilevel converter topology based on cascaded connection of submultilevel units with reduced switching components, DC sources, and blocked voltage by switches. IEEE Trans. Ind. Electron. 63(11), 7157–7164 (2016). https://doi.org/10.1109/TIE.2016.2592460

    Article  Google Scholar 

  38. Mahato, B.; Majumdar, S.; Vatsyayan, S.; Jana, K.C.: A new and generalized structure of MLI topology with half-bridge cell with minimum number of power electronic devices. IETE Tech. Rev. 4602, 1–13 (2020). https://doi.org/10.1080/02564602.2020.1726215

    Article  Google Scholar 

  39. Mahato, B.; Majumdar, S.; Jana, K.C.: A new and generalized structure of single-phase and three-phase cascaded multilevel inverter with reduced power components. Int. Trans. Electr. Energy Syst. 30(2), 1–23 (2019)

    Google Scholar 

  40. Mahato, B.; Majumdar, S.; Chandra Jana, K.: Single-phase modified T-type–based multilevel inverter with reduced number of power electronic devices. Int. Trans. Electr. Energy Syst. 29(11), 1–16 (2019)

    Article  Google Scholar 

  41. Siddique, M.D.; Mekhilef, S.; Shah, N.M.; Sarwar, A.; Iqbal, A.; Memon, M.A.: A new multilevel inverter topology with reduce switch count. IEEE Access 7, 58584–58594 (2019). https://doi.org/10.1109/ACCESS.2019.2914430

    Article  Google Scholar 

  42. Siddique, M.D.; Mekhilef, S.; Shah, N.M.; Memon, M.A.: Optimal design of a new cascaded multilevel inverter topology with reduced switch count. IEEE Access 7, 24498–24510 (2019). https://doi.org/10.1109/ACCESS.2019.2890872

    Article  Google Scholar 

  43. Siddique, M.D., et al.: Low switching frequency based asymmetrical multilevel inverter topology with reduced switch count. IEEE Access 7, 86374–86383 (2019). https://doi.org/10.1109/ACCESS.2019.2925277

    Article  Google Scholar 

  44. Siddique, M.D.; Iqbal, A.; Memon, M.A.; Mekhilef, S.: A new configurable topology for multilevel inverter with reduced switching components. IEEE Access 8, 188726–188741 (2020). https://doi.org/10.1109/access.2020.3030951

    Article  Google Scholar 

  45. Siddique, M.D.; Mekhilef, S.; Rawa, M.; Wahyudie, A.; Chokaev, B.; Salamov, I.: Extended multilevel inverter topology with reduced switch count and voltage stress. IEEE Access 8, 201835–201846 (2020). https://doi.org/10.1109/ACCESS.2020.3026616

    Article  Google Scholar 

  46. Rawa, M., et al.: Dual input switched-capacitor-based singlephase hybrid boost multilevel inverter topology with reduced number of components. IET Power Electron. 13(4), 881–891 (2020). https://doi.org/10.1049/iet-pel.2019.0826

    Article  Google Scholar 

  47. Suresh, Y.; Venkataramanaiah, J.; Panda, A.K.; Dhanamjayulu, C.; Venugopal, P.: Investigation on cascade multilevel inverter with symmetric, asymmetric, hybrid and multi-cell configurations. Ain Shams Eng. J. 8(2), 263–276 (2017). https://doi.org/10.1016/j.asej.2016.09.006

    Article  Google Scholar 

  48. Anand, V.; Singh, V.: Compact symmetrical and asymmetrical multilevel inverter with reduced switches. Int. Trans. Electr. Energy Syst. 5, 1–9 (2020). https://doi.org/10.1002/2050-7038.12458

    Article  Google Scholar 

  49. Dahidah, M.S.A.; Konstantinou, G.: A review of multilevel selective harmonic elimination PWM: formulations, solving algorithms, implementation and applications. IEEE Trans. Industr. Electron. 30, 4091–4106 (2015)

    Google Scholar 

  50. Majumdar, S.; Mahato, B.; Jana, K.C.: Implementation of an optimum reduced components multi-cell multilevel (MC-MLI) inverter for lower standing voltage. IEEE Trans. Industr. Electron. (2019). https://doi.org/10.1109/tie.2019.2913812

    Article  Google Scholar 

  51. Deng, Y.; Harley, R.G.: Space-vector versus nearest-level pulse width modulation for multilevel converters. IEEE Trans. Power Electron. 30, 2962–2974 (2015). https://doi.org/10.1109/TPEL.2014.2331687

    Article  Google Scholar 

  52. Mahato, B.; Majumdar, S.; Jana, K.C.: Carrier-based PWM techniques for multi-level inverters: a comprehensive performance study. J. Sci. Part A Eng. Innov. 5, 101–111 (2018)

    Google Scholar 

  53. Mahato, B.; Majumdar, S.; Jana, C.K.: Reduction of power electronic devices in a single-phase generalized multilevel. J. Circuits. Syst Comput. (2019). https://doi.org/10.1142/S0218126620500930

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashish Shrivastava.

Appendix

Appendix

Table

Table 6 Circuit parameters in simulation and experimental tests

6 shows the circuit parameters in simulation and experimental tests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahato, B., Majumdar, S., Jana, K.C. et al. A Generalized Series-Connected Multilevel Inverter (MLI) Based on Reduced Power Electronic Devices for Symmetrical/Asymmetrical Sources. Arab J Sci Eng 48, 5907–5924 (2023). https://doi.org/10.1007/s13369-022-07066-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07066-z

Keywords

Navigation