Skip to main content
Log in

The Role of Cationic Coagulant-to-Cell Interaction in Dictating the Flocculation-Aided Sedimentation of Freshwater Microalgae

  • Research Article - Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The coagulant chitosan and poly(diallyldimethylammonium chloride) (PDDA) were proven effective to aid the sedimentation of microalgal cells through electrostatic patch flocculation. A total amount of 30 mg/L chitosan and PDDA can achieve cell separation efficiency of \(96.7 \pm 0.7\) and \(98.4 \pm 1.0\)%, respectively. The chitosan outperformed PDDA and promoted 4.4 times faster rate of cell sedimentation than the self-sedimentation rate of cells. The chitosan employed the mechanism of charge neutralization to form larger flocs, while the PDDA that favored the formation of loops and tails protruding away from cell surface employed the bridging mechanism to form flocs. The rate of cell sedimentation induced by chitosan was the highest at pH 7, 8 (control) and 9 compared to that of PDDA, where the cell flocculation by using chitosan was dominated by charge neutralization mechanism at pH 7 and 8 (control), while the cell flocculation was mainly driven by bridging mechanism at pH 9. This result shows that the chitosan is feasible in the harvesting of freshwater microalgae without the need of pH adjustment. Therefore, the chitosan was proven more reliable and time effective than the PDDA in harvesting the freshwater Chlorella sp. without the need of pH adjustment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Demirbas, A.: Biodiesel from oilgae, biofixation of carbon dioxide by microalgae: a solution to pollution problems. Appl. Energy 88, 3541–3547 (2011)

    Article  Google Scholar 

  2. Lim, J.K.; Derek, C.J.C.; Selah, A.J.; Toh, P.Y.; Yasin, N.H.Mat; Ng, B.W.; Ahmad, A.L.: Rapid magnetophoretic separation of microalgae. Small 8, 1683–1692 (2012)

    Article  Google Scholar 

  3. Hu, Y.; Guo, C.; Wang, F.; Wang, S.; Pan, F.; Liu, C.: Improvement of microalgae harvesting by magnetic nanocomposites coated with polyethylenimine. Chem. Eng. J. 242, 341–347 (2014)

    Article  Google Scholar 

  4. Ahmad, A.L.; Mat Yasin, N.H.; Derek, C.J.C.; Lim, J.K.: Microalgae as a sustainable energy source for biodiesel production: a review. Renew. Sustain. Energy Rev. 15, 584–593 (2011)

    Article  Google Scholar 

  5. UN Energy: Sustainable bioenergy: a framework for decision makers. UN Energy (2007)

  6. Mohr, A.; Raman, S.: Lessons from first generation biofuels and implications for the sustainability appraisal of second generation biofuels. Energy Policy 63, 114–122 (2013)

    Article  Google Scholar 

  7. Rawat, I.; Ranjith, K.R.; Mutanda, T.; Bux, F.: Dual role of microalgae: phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Appl. Energy 88, 3411–3424 (2011)

    Article  Google Scholar 

  8. Brennan, L.; Owende, P.: Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew. Sustain. Energy Rev. 14, 557–577 (2010)

    Article  Google Scholar 

  9. Christy, Y.: Biodiesel from microalgae. Biotechnol. Adv. 25, 294–306 (2007)

    Article  Google Scholar 

  10. Demirbas, A.; Demirbas, M.F.: Importance of algae oil as a source of biodiesel. Energy Convers. Manag. 52, 163–170 (2010)

    Article  Google Scholar 

  11. Lam, M.K.; Lee, K.T.: Effects of carbon source towards the growth of Chrorella vulgaris for \(\text{ CO }_{2}\) bio-mitigation and biodiesel production. Int. J. Greenh. Gas Contrib. 14, 169–176 (2013)

    Article  Google Scholar 

  12. Moreno-Garrido, I.: Microalgae immobilization: current techniques and uses. Bioresour. Technol. 99, 3949–3964 (2008)

    Article  Google Scholar 

  13. Vandamme, D.; Foubert, I.; Muylaert, K.: Flocculation as a low-cost method for harvesting microalgae for bulk biomass production. Trends Biotechnol. 31, 233–239 (2013)

    Article  Google Scholar 

  14. Wan, C.; Alam, Md Asraful; Zhao, X.-Q.; Zhang, X.-Y.; Guo, S.-L.; Ho, S.-H.; Chang, J.-S.; Bai, F.-W.: Current progress and future prospect of microalgal biomass harvest using various flocculation technologies. Bioresour. Technol. 184, 251–257 (2015)

    Article  Google Scholar 

  15. Lee, A.K.; Lewis, D.M.; Ashman, P.J.: Microbial flocculation, a potentially low-cost harvesting technique for marine microalgae for the production of biodiesel. J. Appl. Phycol. 21, 559–567 (2009)

    Article  Google Scholar 

  16. Brostow, W.; Lobland, H.E.G.; Pal, S.; Singh, R.P.: Polymeric flocculants for wastewater and industrial effluent treatment. J. Mater. Educ. 31, 157–166 (2009)

    Google Scholar 

  17. Yadida, R.; Abeliovich, A.; Belfort, G.: Algae removal by high gradient magnetic filtration. Environ. Sci. Technol. 11, 913–916 (1977)

    Article  Google Scholar 

  18. Padhye, L.; Luzinova, Y.; Cho, M.; Mizaikoff, B.; Kim, J.-H.; Huang, C.-H.: PolyDADMAC and dimethylamine as precursors of n-nitrosodimethylamine during ozonation: reaction kinetics and mechanisms. Environ. Sci. Technol. 45, 4353–4359 (2011)

    Article  Google Scholar 

  19. Liu, J.; Zhu, Y.; Tao, Y.; Zhang, Y.; Li, A.; Li, T.; Sang, M.; Zhang, C.: Freshwater microalgae harvested via flocculation induced by pH decrease. Biotechnol. Biofuels 6, 1–11 (2013)

    Article  Google Scholar 

  20. Uduman, N.; Qi, Y.; Danquah, M.K.; Forde, G.M.; Hoadley, A.: Dewatering of microalgal cultures: a major bottleneck to algae-based fuels. J. Renew. Sustain. Energy 2, 012701–012715 (2010)

    Article  Google Scholar 

  21. Benemann, J.; Koopman, B.; Weissman, J.; Eisenberg, D.; Goebel, R.: Development of microalgae harvesting and high rate pond technologies in California, Algae biomass: production and use [sponsored by the National Council for Research and Development, Israel and the Gesellschaft fur Strahlen-und Umweltforschung (GSF), Munich, Germany]; editors, Gedaliah Shelef, Carl J. Soeder (1980)

  22. Toh, P.Y.; Ng, B.W.; Ahmad, A.L.; Derek, C.J.C.; Lim, J.K.: Magnetophoretic separation of Chlorella sp.: role of cationic polymer binder. Process Saf. Environ. 92, 515–521 (2014)

    Article  Google Scholar 

  23. Lim, J.K.; Majetich, S.A.; Tilton, R.D.: Stabilization of superparamagnetic iron oxide core-gold shell nanoparticles in high ionic strength media. Langmuir 23, 13384–13393 (2009)

    Article  Google Scholar 

  24. Henderson, R.; Parsons, S.A.; Jefferson, B.: The impact of algal properties and pre-oxidation on solid–liquid separation of algae. Water Res. 42, 1827–1845 (2008)

    Article  Google Scholar 

  25. Cole, T.M.; Wells, S.A.: A Two Dimensional, Laterally Averaged, Hydrodynamic and Water Quality Model. US Army Engineer Waterways Experiment Station, Vicksburg, MS (1995)

    Google Scholar 

  26. Mclaughlin, S.; Poo, M.-M.: The role of electro-osmosis in the electric-field-induced movement of charged macromolecules on the surfaces of cells. Biophys. J. 34, 85–93 (1981)

    Article  Google Scholar 

  27. Milledge, J.J.; Heaven, S.: A review of the harvesting of microalgae for biofuel production. Rev. Environ. Sci. Biotechnol. 12, 165–178 (2013)

    Article  Google Scholar 

  28. Dankers, P.J.T.; Winterwerp, J.C.: Hindered settling of mud flocs: theory and validation. Cont. Shelf Res. 27, 1893–1907 (2007)

    Article  Google Scholar 

  29. Thibodeaux, L.J.; Mackay, D.: Handbook of Chemical Mass Transport in the Environment. CRC Press, Boca Raton (2011)

  30. Vandamme, D.; Foubert, I.; Fraeye, I.; Muylaert, K.: Influence of organic matter generated by Chlorella vulgaris on five different modes of flocculation. Bioresour. Technol. 124, 508–511 (2012)

    Article  Google Scholar 

  31. Kokufuta, E.; Takahashi, K.: Adsorption of poly(diallyldimethylammonium chloride) on colloid silica from water and salt solution. Macromolecules 19, 351–354 (1986)

    Article  Google Scholar 

  32. Li, G.-Y.; Huang, K.-L.; Jiang, Y.-R.; Ding, P.; Yang, D.-L.: Preparation and characterization of carboxyl functionalization of chitosan derivative magnetic nanoparticles. Biochem. Eng. J. 40, 408–414 (2008)

    Article  Google Scholar 

  33. Toh, P.Y.; Ng, B.W.; Ahmad, A.L.; Derek, C.J.C.; Lim, J.K.: The role of particle-to-cell interactions in dictating the nanoparticle aided magnetophoretic separation of microalgal cell. Nanoscale 6, 12838–12848 (2014)

    Article  Google Scholar 

  34. Zhou, Y.; Franks, G.V.: Flocculation mechanism induced by cationic polymers investigated by light scattering. Langmuir 22, 6775–6786 (2006)

    Article  Google Scholar 

  35. Ahmad, A.L.; Yasin, N.H.Mat; Derek, C.J.C.; Lim, J.K.: Optimization of microalgae coagulation process using chitosan. Chem. Eng. J. 173, 879–882 (2011)

    Article  Google Scholar 

  36. Fritz, G.; Schadler, V.; Willenbacher, N.; Wagner, N.J.: Electrostatic stabilization of colloidal dispersions. Langmuir 18, 6381–6390 (2002)

    Article  Google Scholar 

  37. Bos, R.; van der Mei, H.C.; Busscher, H.J.: Physico-chemistry of initial microbial adhesive interactions-Its mechanisms and methods for study. FEMS Microbiol. Rev. 23, 179–230 (1999)

    Article  Google Scholar 

  38. Yean, S.L.; Cong, C.T.; Yavuz, L.; Mayo, C.T.; Yu, J.T.; Kan, W.W.; Colvin, V.L.; Tomson, M.B.: Effect of magnetite particle size on adsorption and desorption of arsenite and arsenate. J. Mater. Res. 20, 3255–3264 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pey Yi Toh or Derek Juinn Chieh Chan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 7512 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toh, P.Y., Azenan, N.F., Wong, L. et al. The Role of Cationic Coagulant-to-Cell Interaction in Dictating the Flocculation-Aided Sedimentation of Freshwater Microalgae. Arab J Sci Eng 43, 2217–2225 (2018). https://doi.org/10.1007/s13369-017-2584-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-017-2584-1

Keywords

Navigation