Skip to main content

Advertisement

Log in

Microbial flocculation, a potentially low-cost harvesting technique for marine microalgae for the production of biodiesel

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Microbial flocculation is investigated as a separation technique for harvesting marine microalgae for the production of biodiesel. Organic carbon (acetate, glucose or glycerine) was used as substrate for the growth of flocculating microbes in situ. Under stress, due to nutrient depletion, these microbes produced extracellular polymeric substances that promote flocculation of the coccolithophorid alga, Pleurochrysis carterae. Maximum recovery efficiency was achieved at low concentration of organic substrate (0.1 g L−1) and with a long mixing time (24 h); an average recovery efficiency of over 90% and a concentration factor of 226 were achieved. The recovery efficiency is positively correlated with mixing time (R 2 = 0.90). The concentration factor is negatively correlated to the product of substrate concentration and mixing time (R 2 = 0.73). The microalgae cells were not under stress and remained viable, thus potentially allowing media to be reused in large-scale processes without further treatment. Other advantages of the process are that no metallic flocculants were required and the organic substrates are readily available, e.g. glycerine is a by-product of biodiesel production and acetic acid may be produced by anaerobic digestion of the biomass residue after lipid extraction. Further research is required to optimise the process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ahmann D, Dorgan J (2007) Bioengineering for pollution prevention through development of biobased energy and materials. National Center for Environmental Research, U.S. Environmental Protection Agency, Office of Research and Development, Washington, Report no. EPA/600/R-07/028, pp 117–129

  • Al-Shahwani MF, Jazrawi SF, Al-Rawi EH (1986) Effects of bacterial communities on floc sizes and numbers in industrial and domestic effluents. Agric Wastes 16:303–311. doi:10.1016/0141-4607(86)90060-0

    Article  CAS  Google Scholar 

  • Becker E (1995) Microalgae biotechnology and microbiology. Cambridge University Press, Cambridge, pp 158–160

    Google Scholar 

  • Benemann J, Oswald W (1996) Systems and economic analysis of microalgae ponds for conversion of carbon dioxide to biomass. 4th Quarterly Technical Progress Report, Department of Energy, Pittsburgh Energy Technology Centre, Report CONF-9409207-2. pp 105–109

  • Bilanovic D, Shelef G (1988) Flocculation of microalgae with cationic polymers—effects of medium salinity. Biomass 17:65–76. doi:10.1016/0144-4565(88)90071-6

    Article  CAS  Google Scholar 

  • Bossier P, Verstraete W (1996) Triggers for microbial aggregation in activated sludge. Appl Microbiol Biotechnol 45:1–6. doi:10.1007/s002530050640

    Article  CAS  Google Scholar 

  • Chang YI, Shih LH, Chen SW (2005) Effects of glucose and mannose on the flocculation behavior of Saccharomyces cerevisiae at different life stages. Colloids Surf B Biointerfaces 44:6–14. doi:10.1016/j.colsurfb.2005.05.008

    Article  PubMed  CAS  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306. doi:10.1016/j.biotechadv.2007.02.001

    Article  PubMed  CAS  Google Scholar 

  • Choi CW, Yoo S, Oh IH, Park SH (1998) Characterization of an extracellular flocculating substance produced by a planktonic cyanobacterium, Anabaena sp. J Biotechnol Lett 20:643–646. doi:10.1023/A:1005358204636

    Article  CAS  Google Scholar 

  • Comte S, Guibaud G, Baudu M (2006) Relations between extraction protocols for activated sludge extracellular polymeric substances (EPS) and EPS complexation properties. Part I, Comparison of the efficiency of eight EPS extraction methods. Enz Microb Tech 38:237–245. doi:10.1016/j.enzmictec.2005.06.016

    Article  CAS  Google Scholar 

  • Esser K, Kues U (1983) Flocculation and its implication for biotechnology. Proc Bioch 18:21–23

    CAS  Google Scholar 

  • Frølund B, Palmgren R, Keiding K, Nielsen PH (1996) Extraction of extracellular polymers from activated sludge using a cation exchange resin. Water Res Oxf 30:1749. doi:10.1016/0043-1354(95)00323-1

    Article  Google Scholar 

  • Fujita M, Ike M, Tachibana S, Kitada G, Kim SM, Inoue Z (2000) Characterization of a bioflocculant produced by Citrobacter sp. TKF04 from acetic and propionic acids. J Biosci Bioeng 89:40–46. doi:10.1016/S1389-1723(00)88048-2

    Article  PubMed  CAS  Google Scholar 

  • Gerhart D, Rittschof D, Mayo SW (1988) Chemical ecology and the search for marine antifoulants. J Chem Ecol 14:1905. doi:10.1007/BF01013485

    Article  CAS  Google Scholar 

  • Hantula J, Bamford DH (1991) The efficiency of the protein-dependent flocculation of Flavobacterium sp. is sensitive to the composition of growth medium. Appl Microbiol Biotechnol 36:100–104. doi:10.1007/BF00164707

    Article  CAS  Google Scholar 

  • Higgins M, Novak J (1997) Characterisation of exocellular protein and its role in bioflocculation. J Environ Eng 123:479–485. doi:10.1061/(ASCE)0733-9372(1997)123:5(479)

    Article  CAS  Google Scholar 

  • Kleiner K (2007) The backlash against biofuels. Nature Reports. Clim Change 2(Jan):2008. New York.. doi:10.1038/climate.2007.71

  • Kurane R, Toeda K, Takeda K, Suzuki T (1986) Culture conditions for production of microbial flocculant by Rhodococcus erythropolis. Agric Biol Chem 50:2309–2313

    CAS  Google Scholar 

  • Li X, Yang S (2007) Influence of loosely bound extracellular polymeric substances (EPS) on the flocculation, sedimentation and dewaterability of activated sludge. Water Res 41:1022–1030. doi:10.1016/j.watres.2006.06.037

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Kuba T, Kusuda T (2006) The influence of starvation phase on the properties and the development of aerobic granules. Enzyme Microb Technol 38:670–674. doi:10.1016/j.enzmictec.2005.07.020

    Article  CAS  Google Scholar 

  • Lian B, Chen Y, Zhao J, Teng H, Zhu L, Yuan S (2007) Microbial flocculation by Bacillus mucilaginosus: applications and mechanisms. Bioresour Technol 99:4825–4831. doi:10.1016/j.biortech.2007.09.045

    Article  PubMed  CAS  Google Scholar 

  • Liao BQ, Allen DG, Leppard GG, Droppo IG, Liss SN (2002) Interparticle interactions affecting the stability of sludge flocs. J Colloid Interface Sci 249:372–380. doi:10.1006/jcis.2002.8305

    Article  PubMed  CAS  Google Scholar 

  • Liu H, Fang H (2002) Extraction of extracellular polymeric substances (EPS) of sludges. J Biotechnol 95:249–256. doi:10.1016/S0168-1656(02)00025-1

    Article  PubMed  CAS  Google Scholar 

  • Ma F, Hanna M (1999) Biodiesel production: a review. Bioresour Technol 70:1–15. doi:10.1016/S0960-8524(99)00025-5

    Article  CAS  Google Scholar 

  • McConnachie G (1993) Water treatment for developing countries using baffled-channel hydraulic flocculation. Proceedings of the Institution of Civil Engineers, Water Maritime Energy 101:55–61

    Article  Google Scholar 

  • Mittelman M (1996) Bacterial adhesion—molecular and ecological diversity. Wiley-Liss, New York, pp 101–108

    Google Scholar 

  • Moheimani N, Borowitzka MA (2006) The long-term culture of the coccolithophore Pleurochrysis carterae (Haptophyta) in outdoor raceway ponds. J Appl Phycol 18:703–712. doi:10.1007/s10811-006-9075-1

    Article  Google Scholar 

  • Mohn F (1988) Harvesting of microalgal biomass. Microalgal biotechnology. ed. Borowitzka. Cambridge University Press, Cambridge. Ch. 15

  • Murray PB, Barron EJ, Jorgensen JH, Pfaller MA, Yolken RH (2003) Manual of clinical microbiology. ASM, Washington, D.C

    Google Scholar 

  • Noüe J, Laliberté G, Proulx D (1992) Algae and waste water. J Appl Phycol 4:247–254. doi:10.1007/BF02161210

    Article  Google Scholar 

  • Rippka R, Deruelles J, Waterbury J, Herdman M, Stanier R (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61

    Google Scholar 

  • Rosowski JR (1992) Specificity of bacterial attachment sites on the filamentous diatom Navicula confervacea. Can J Microbiol 38:676–686

    Article  CAS  Google Scholar 

  • Russ J, Dehoff RT (2000) Practical stereology. Kluwer/Plenum, New York, p 149–181

    Google Scholar 

  • Salehizadeh H, Vossoughi M, Alemzadeh I (2000) Some investigations on bioflocculant producing bacteria. Biochem Eng J 5:39–44. doi:10.1016/S1369-703X(99)00066-2

    Article  CAS  Google Scholar 

  • Shipin O, Meiring P, Phaswana R, Kluever H (1999) Integrating ponds and activated sludge process in the PETRO concept. Water Res 33:1767–1774. doi:10.1016/S0043-1354(98)00389-3

    Article  CAS  Google Scholar 

  • Sukenik A, Bilanovic D, Shelef G (1988) Flocculation of microalgae in brackish and sea waters. Biomass 15:187–199. doi:10.1016/0144-4565(88)90084-4

    Article  Google Scholar 

  • Toeda K, Kurane R (1991) Microbial flocculant from Alcaligenes cupidus KT201. Agric Biol Chem 55:2793–2799

    CAS  Google Scholar 

  • Winter A, Siesser WG (1994) Coccolithophores. Cambridge University Press, Cambridge, UK, pp 15–20

    Google Scholar 

  • Yokoi H, Yoshida T, Mori S, Hirose J, Hayashi S, Takasaki Y (1997) Biopolymer flocculant produced by an Enterobacter sp. Biotechnol Lett 19:569–573. doi:10.1023/A:1018301807009

    Article  CAS  Google Scholar 

  • Zajic J, Leduy A (1973) Flocculant and chemical properties of a polysaccharide from Pullularia pullulans. Appl Microbiol 25:628–635

    PubMed  CAS  Google Scholar 

  • Zhang J, Liu Z, Wang S, Jiang P (2002) Characterization of a bioflocculant produced by the marine myxobacterium Nannocystis sp. NU-2. J Appl Microbiol Biotechnol 59:517–522. doi:10.1007/s00253-002-1023-7

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors would like to thank the following people; Prof Michael Borowitzka for supplying P. carterae, the Infectious Diseases Laboratory from the Institute of Medical and Veterinary Science, Adelaide, South Australia, for the identification of the bacteria involved in the flocculation and Mr. Steven Amos for technical assistance with microalgae culturing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew K. Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, A.K., Lewis, D.M. & Ashman, P.J. Microbial flocculation, a potentially low-cost harvesting technique for marine microalgae for the production of biodiesel. J Appl Phycol 21, 559–567 (2009). https://doi.org/10.1007/s10811-008-9391-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-008-9391-8

Keywords

Navigation