Skip to main content
Log in

Prediction of primary climate variability modes at the Beijing Climate Center

  • Published:
Journal of Meteorological Research Aims and scope Submit manuscript

Abstract

Climate variability modes, usually known as primary climate phenomena, are well recognized as the most important predictability sources in subseasonal–interannual climate prediction. This paper begins by reviewing the research and development carried out, and the recent progress made, at the Beijing Climate Center (BCC) in predicting some primary climate variability modes. These include the El Niño–Southern Oscillation (ENSO), Madden–Julian Oscillation (MJO), and Arctic Oscillation (AO), on global scales, as well as the sea surface temperature (SST) modes in the Indian Ocean and North Atlantic, western Pacific subtropical high (WPSH), and the East Asian winter and summer monsoons (EAWM and EASM, respectively), on regional scales. Based on its latest climate and statistical models, the BCC has established a climate phenomenon prediction system (CPPS) and completed a hindcast experiment for the period 1991–2014. The performance of the CPPS in predicting such climate variability modes is systematically evaluated. The results show that skillful predictions have been made for ENSO, MJO, the Indian Ocean basin mode, the WPSH, and partly for the EASM, whereas less skillful predictions were made for the Indian Ocean Dipole (IOD) and North Atlantic SST Tripole, and no clear skill at all for the AO, subtropical IOD, and EAWM. Improvements in the prediction of these climate variability modes with low skill need to be achieved by improving the BCC’s climate models, developing physically based statistical models as well as correction methods for model predictions. Some of the monitoring/prediction products of the BCC-CPPS are also introduced in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahn, J. B., and H. J. Kim, 2014: Improvement of 1-month lead predictability of the wintertime AO using a realistically varying solar constant for a CGCM. Meteor. Appl., 21, 415–418, doi: 10.1002/met.1372.

    Article  Google Scholar 

  • Ashok, K., S. K. Behera, S. A. Rao, et al., 2007: El Niño Modoki and its possible teleconnection. J. Geophys. Res., 112(C11), C11007.

    Article  Google Scholar 

  • Barnston, A. G., M. K. Tippett, M. L. L'Heureux, et al., 2012: Skill of real-time seasonal ENSO model predictions during 2002–11: Is our capability increasing? Bull. Amer. Meteor. Soc., 93, 631–651.

    Article  Google Scholar 

  • Behera, S. K., and T. Yamagata, 2001: Subtropical SST dipole events in the southern Indian Ocean. Geophys. Res. Lett., 28, 327–330.

    Article  Google Scholar 

  • Brönnimann, S., 2007: The impact of El Niño–Southern Oscillation on European climate. Rev. Geophys., 45, RG3003, doi: 10.1029/2006RG000199.

    Article  Google Scholar 

  • Cane, M. A., S. E. Zebiak, and S. C. Dolan, 1986: Experimental forecasts of El Niño. Nature, 321, 827–832.

    Article  Google Scholar 

  • Capotondi, A., A. T. Wittenberg, M. Newman, et al., 2015: Understanding ENSO diversity. Bull. Amer. Meteor. Soc., 96, 921–938.

    Article  Google Scholar 

  • Chang, C.-P., 2004: East Asian Monsoon (World Scientific Series on Meteorology of East Asia). World Scientific Publishing, Singapore, 1–572.

    Google Scholar 

  • Chen, D. K., S. E. Zebiak, A. J. Busalacchi, et al., 1995: An improved procedure for El Niño forecasting: Implications for predictability. Science, 269, 1699–1702.

    Article  Google Scholar 

  • Cheng, Y. B., H.-L. Ren, and G. R. Tan, 2016: Empirical orthogonal function-analogue correction of extra-seasonal dynamical prediction of East Asian summer monsoon. J. Appl. Meteor. Sci., 27, 285–292. (in Chinese)

    Google Scholar 

  • Cheng, Y. J., Y. M. Tang, X. B. Zhou, et al., 2010: Further analysis of singular vector and ENSO predictability in the Lamont model—Part I: Singular vector and the control factors. Climate Dyn., 35, 807–826.

    Article  Google Scholar 

  • Christensen, J. H., K. K. Kumar, E. Aldrian, et al., 2013: Chapter 14: Climate phenomena and their relevance for future regional climate change. IPCC WGI Fifth Assessment Report. Stocker, T. F., D. Qin, G.-K. Plattner, et al., Eds., Cambridge University Press, Cambridge, United Kingdom, New York, NY.

    Google Scholar 

  • Cohen, J., D. Salstein, and K. Saito, 2002: A dynamical framework to understand and predict the major Northern Hemisphere mode. Geophys. Res. Lett., 29, 51-1–51-4.

  • Derome, J., H. Lin, and G. Brunet, 2005: Seasonal forecasting with a simple general circulation model: Predictive skill in the AO and PNA. J. Climate, 18, 597–609.

    Article  Google Scholar 

  • Ding, R. Q., K. J. Ha, and J. P. Li, 2010: Interdecadal shift in the relationship between the East Asian summer monsoon and the tropical Indian Ocean. Climate Dyn., 34, 1059–1071.

    Article  Google Scholar 

  • Ding, Y. H., and J. C. L. Chan, 2005: The East Asian summer monsoon: An overview. Meteor. Atmos. Phys., 89, 117–142, doi: 10.1007/s00703-005-0125-z.

    Article  Google Scholar 

  • Ding, Y. H., Y. M. Liu, Y. J. Song, et al., 2002: Research and experiments of the dynamical model system for short-term climate prediction. Climatic Environ. Res., 7, 236–246. (in Chinese)

    Google Scholar 

  • Duan, W. S., and J. Y. Hu, 2016: The initial errors that induce a significant “spring predictability barrier” for El Niño events and their implications for target observation: Results from an earth system model. Climate Dyn., 46, 3599–3615, doi: 10.1007/s00382-015-2789-5.

    Article  Google Scholar 

  • Duan, W. S., P. Zhao, J. Y. Hu, et al., 2016: The role of nonlinear forcing singular vector tendency error in causing the “spring predictability barrier” for ENSO. J. Meteor. Res., 30, 853–866, doi: 10.1007/s13351-016-6011-4.

    Article  Google Scholar 

  • Fan, K., B. Q. Tian, and H. J. Wang, 2016: New approaches for the skillful prediction of the winter North Atlantic Oscillation based on coupled dynamic climate models. Int. J. Climatol., 36, 82–94.

    Article  Google Scholar 

  • Feng, J., L. Wang, W. Chen, et al., 2010: Different impacts of two types of Pacific Ocean warming on Southeast Asian rainfall during boreal winter. J. Geophys. Res., 115, D24122, doi: 10.1029/2010JD014761.

    Article  Google Scholar 

  • García-Serrano, J., and C. Frankkignoul, 2014: High predictability of the winter Euro–Atlantic climate from cryospheric variability. Nat. Geosci., 7, E1, doi: 10.1038/ngeo2118.

    Article  Google Scholar 

  • Griffies, S. M., A. Gnanadesikan, K. W. Dixon, et al., 2005: Formulation of an ocean model for global climate simulations. Ocean Science, 1, 45–79.

    Article  Google Scholar 

  • Guo, Q. Y., 1994: Relationship between the variations of East Asian winter monsoon and temperature anomalies in China. Quart. J. Appl. Meteor., 5, 218–225. (in Chinese)

    Google Scholar 

  • Ham, Y.-G., J.-S. Kug, and I.-S. Kang, 2009: Optimal initial perturbations for El Niño ensemble prediction with ensemble Kalman filter. Climate Dyn., 33, 959–973.

    Article  Google Scholar 

  • Hendon, H. H., E. Lim, G. M. Wang, et al., 2009: Prospects for predicting two flavors of El Niño. Geophys. Res. Lett., 36, L19713.

    Article  Google Scholar 

  • Hu, K. M., G. Huang, and R. H. Huang, 2011: The impact of tropical Indian Ocean variability on summer surface air temperature in China. J. Climate, 24, 5365–5377.

    Article  Google Scholar 

  • Hu, Z.-Z., A. Kumar, B. Huang, et al., 2017: Interdecadal variations of ENSO around 1999/2000. J. Meteor. Res., 31, 73–81, doi: 10.1007/s13351-017-6074-x.

    Article  Google Scholar 

  • Imada, Y., H. Tatebe, M. Ishii, et al., 2015: Predictability of two types of El Niño assessed using an extended seasonal prediction system by MIROC. Mon. Wea. Rev., 143, 4597–4617.

    Article  Google Scholar 

  • Izumo, T., J. Vialard, M. Lengaigne, et al., 2010: Influence of the state of the Indian Ocean Dipole on the following year’s El Niño. Nature Geoscience, 3, 168–172.

    Article  Google Scholar 

  • Jeong, H.-I., D. Y. Lee, K. Ashok, et al., 2012: Assessment of the APCC coupled MME suite in predicting the distinctive climate impacts of two flavors of ENSO during boreal winter. Climate Dyn., 39, 475–493.

    Article  Google Scholar 

  • Jeong, H.-I., J.-B. Ahn, J.-Y. Lee, et al., 2015: Interdecadal change of interannual variability and predictability of two types of ENSO. Climate Dyn., 44, 1073–1091.

    Article  Google Scholar 

  • Jia, X. L., and C. Y. Li, 2005: Dipole oscillation in the southern Indian Ocean and its impacts on climate. Chinese J. Geophy., 48, 1238–1249. (in Chinese)

    Google Scholar 

  • Jia, X. L., L. J. Chen, F. M. Ren, et al., 2011: Impacts of the MJO on winter rainfall and circulation in China. Adv. Atmos. Sci., 28, 521–533.

    Article  Google Scholar 

  • Jin, E. K., J. L. Kinter III, B. Wang, et al., 2008: Current status of ENSO prediction skill in coupled ocean–atmosphere models. Climate Dyn., 31, 647–664.

    Article  Google Scholar 

  • Kalnay, E., M. Kanamitsu, R. Kistler, et al., 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–472.

    Article  Google Scholar 

  • Kang, D., M. I. Lee, J. Im, et al., 2014: Prediction of the Arctic Oscillation in boreal winter by dynamical seasonal forecasting systems. Geophys. Res. Lett., 41, 3577–3585.

    Article  Google Scholar 

  • Kao, H. Y., and J. Y. Yu, 2009: Contrasting eastern-Pacific and central-Pacific types of ENSO. J. Climate, 22, 615–632, doi: 10.1175/2008JCLI2309.1.

    Article  Google Scholar 

  • Kim, H.-J., and J.-B. Ahn, 2015: Improvement in prediction of the Arctic Oscillation with a realistic ocean initial condition in a CGCM. J. Climate, 28, 8951–8967.

    Article  Google Scholar 

  • Kirtman, P. B., 2003: The COLA anomaly coupled model: Ensemble ENSO prediction. Mon. Wea. Rev., 131, 2324–2341.

    Article  Google Scholar 

  • Klein, S. A., B. J. Soden, and N.-C. Lau, 1999: Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Climate, 12, 917–932.

    Article  Google Scholar 

  • Kug, J.-S., F.-F. Jin, and S.-I. An, 2009: Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. J. Climate, 22, 1499–1515.

    Article  Google Scholar 

  • Kumar, A., M. Y. Chen, Y. Xue, et al., 2015: An analysis of the temporal evolution of ENSO prediction skill in the context of the equatorial Pacific Ocean observing system. Mon. Wea. Rev., 143, 3204–3213.

    Article  Google Scholar 

  • Latif, M., D. Anderson, T. Barnett, et al., 1998: A review of the predictability and prediction of ENSO. J. Geophys. Res., 103, 14375–14393.

    Article  Google Scholar 

  • Li, C. Y., and M. Q. Mu, 2001: The influence of the Indian Ocean dipole on atmospheric circulation and climate. Adv. Atmos. Sci., 18, 831–843.

    Google Scholar 

  • Li, S. L., J. Lu, G. Huang, et al., 2008: Tropical Indian Ocean basin warming and East Asian summer monsoon: A multiple AGCM study. J. Climate, 21, 6080–6088.

    Article  Google Scholar 

  • Li, T., 2014: Recent advance in understanding the dynamics of 236 the Madden–Julian oscillation. J. Meteor. Res., 28, 1–33.

    Google Scholar 

  • Lin, H., G. Brunet, J. Derome, 2008: Forecast skill of the Madden-Julian oscillation in two Canadian atmospheric models. Mon. Wea. Rev., 136, 4130–4149.

    Article  Google Scholar 

  • Liu, X. W., T. W. Wu, S. Yang, et al., 2015: Performance of the seasonal forecasting of the Asian summer monsoon by BCC_CSM1.1(m). Adv. Atmos. Sci., 32, 1156–1172.

    Article  Google Scholar 

  • Lu, B., and H.-L. Ren, 2016: Improving ENSO periodicity simulation by adjusting cumulus entrainment in BCC_CSMs. Dyn. Atmos. Oceans, 76, 127–140, doi: 10.1016/j.dynatmoce. 2016.10.005.

    Article  Google Scholar 

  • Luo, J. J., S. Masson, S. Behera, et al., 2005: Seasonal climate predictability in a coupled OAGCM using a different approach for ensemble forecasts. J. Climate, 18, 4474–4497.

    Article  Google Scholar 

  • Luo, J. J., S. Masson, S. Behera, et al., 2007: Experimental forecasts of the Indian Ocean dipole using a coupled OAGCM. J. Climate, 20, 2178–2190.

    Article  Google Scholar 

  • Luo, J. J., S. Behera, Y. Masumoto, et al., 2008: Successful prediction of the consecutive IOD in 2006 and 2007. Geophys. Res. Lett., 35, L14S02.

    Article  Google Scholar 

  • MacLachlan, C., A. Arribas, K. A. Peterson, et al., 2015: Global seasonal forecast system version 5 (GloSea5): A high-resolution seasonal forecast system. Quart. J. Roy. Meteor. Soc., 141, 1072–1084.

    Article  Google Scholar 

  • McPhaden, M. J., 2003: Tropical Pacific Ocean heat content variations and ENSO persistence barriers. Geophys. Res. Lett., 30, 1480.

    Article  Google Scholar 

  • North, G. R., F. J. Moeng, T. L. Bell, et al., 1982: The latitude dependence of the variance of zonally averaged quantities. Mon. Wea. Rev., 110, 319–326.

    Article  Google Scholar 

  • Qi, Y. J., and R. H. Zhang, 2015: A review of the intraseasonal oscillation associated with rainfall over eastern China and its operational application. J. Trop. Meteor., 31, 566–576. (in Chinese)

    Google Scholar 

  • Qian, Z. L., H. J. Wang, and J. Q. Sun, 2011: The hindcast of winter and spring Arctic and Antarctic Oscillation with the coupled climate models. Acta Meteor. Sinica, 25, 340–354.

    Article  Google Scholar 

  • Rashid, H. A., H. H. Hendon, M. C. Wheeler, et al., 2011: Prediction of the Madden–Julian oscillation with the POAMA dynamical prediction system. Climate Dyn., 36, 649–661.

    Article  Google Scholar 

  • Rasmusson, E. M., and T. H. Carpenter, 1982: Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon. Wea. Rev., 110, 354–384.

    Article  Google Scholar 

  • Ren, H.-L., and F.-F. Jin, 2011: Niño indices for two types of ENSO. Geophys. Res. Lett., 38, L04704, doi: 10.1029/2010GL 046031.

    Article  Google Scholar 

  • Ren, H.-L., and F.-F. Jin, 2013: Recharge oscillator mechanisms in two types of ENSO. J. Climate, 26, 6506–6523.

    Article  Google Scholar 

  • Ren, H.-L., and Y. Y. Shen, 2016: A new look at impacts of MJO on weather and climate in China. Adv. Meteor. Sci. Tech., 6, 97–105. (in Chinese)

    Google Scholar 

  • Ren, H.-L., F.-F. Jin, J.-S. Kug, et al., 2009: A kinematic mechanism for positive feedback between synoptic eddies and NAO. Geophys. Res. Lett,. 36, L11709, doi: 10.1029/2009GL 037294.

    Article  Google Scholar 

  • Ren, H.-L., F.-F. Jin, J.-S. Kug, et al., 2011: Transformed eddy-PV flux and positive synoptic eddy feedback onto low-frequency flow. Climate Dyn., 36, 2357–2370.

    Article  Google Scholar 

  • Ren, H.-L., F.-F. Jin, and L. Gao, 2012: Anatomy of synoptic eddy-NAO interaction through eddy structure decomposition. J. Atmos. Sci., 69, 2171–2191.

    Article  Google Scholar 

  • Ren, H.-L., F.-F. Jin, M. F. Stuecker, et al., 2013: ENSO regime change since the late 1970s as manifested by two types of ENSO. J. Meteor. Soc. Japan, 91, 835–842.

    Article  Google Scholar 

  • Ren, H.-L., Y. Liu, F.-F. Jin, et al., 2014: Application of the analogue-based correction of errors method in ENSO prediction. Atmos. Oceanic Sci. Lett., 7, 157–161.

    Article  Google Scholar 

  • Ren, H.-L., J. Wu, C. B. Zhao, et al., 2015: Progresses of MJO prediction researches and developments. J. Appl. Meteor. Sci., 26, 658–668. (in Chinese)

    Google Scholar 

  • Ren, H.-L., F.-F. Jin, B. Tian, et al., 2016a: Distinct persistence barriers in two types of ENSO. Geophys. Res. Lett., 43, 10973–10979, doi: 10.1002/2016GL071015.

    Article  Google Scholar 

  • Ren, H.-L., J. Wu, C. B. Zhao, et al., 2016b: MJO ensemble prediction in BCC_CSM1.1(m) using different initialization schemes. Atmos. Oceanic Sci. Lett., 9, 60–65.

    Article  Google Scholar 

  • Ren, H.-L., Y. Liu, J. Q. Zuo, et al., 2016c: The new generation of ENSO prediction system in Beijing Climate Centre and its predictions for 2014/2016 super El Niño event. Meteor. Mon., 42, 521–531, doi: 10.7519/j.issn.1000-0526.2016.05.001. (in Chinese)

    Google Scholar 

  • Ren, H.-L., J. Q. Zuo, F.-F. Jin, et al., 2016d: ENSO and annual cycle interaction: The combination mode representation in CMIP5 models. Climate Dyn., 46, 3753–3765, doi: 10.1007/s00382-015-2802-z.

    Article  Google Scholar 

  • Reynolds, R. W., N. A. Rayner, T. M. Smith, et al., 2002: An improved in situ and satellite SST analysis for climate. J. Climate, 15, 1609–1625.

    Article  Google Scholar 

  • Riddle, E. E., A. H. Butler, J. C. Furtado, et al., 2013: CFSv2 ensemble prediction of the wintertime Arctic Oscillation. Climate Dyn., 41, 1099–1116.

    Article  Google Scholar 

  • Saha, S., S. Moorthi, X. R. Wu, et al., 2014: The NCEP climate forecast system version 2. J. Climate, 27, 2185–2208, doi: 10.1175/JCLI-D-12-00823.1.

    Article  Google Scholar 

  • Saji, N. H., and T. Yamagata, 2003: Possible impacts of Indian Ocean Dipole Mode events on global climate. Climate Res., 25, 151–169.

    Article  Google Scholar 

  • Saji, N. H., B. N. Goswami, P. N. Vinayachandran, et al., 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360–363.

    Google Scholar 

  • Scaife, A. A., A. Arribas, E. Blockley, et al., 2014: Skillful longrange prediction of European and North American winters. Geophys. Res. Lett., 41, 2514–2519.

    Article  Google Scholar 

  • Shi, L., H.-H Hendon, O. Alves, et al., 2012: How predictable is the Indian Ocean Dipole? Mon. Wea. Rev., 140, 3867–3884.

    Article  Google Scholar 

  • Shi, N., J. J. Lu, and Q. G. Zhu, 1996: East Asian winter/summer monsoon intensity indices with their climatic change in 1873–1989. J. Nanjing Inst. Meteor., 19, 168–177. (in Chinese)

    Google Scholar 

  • Stuecker, M. F., A. Timmermann, F.-F. Jin, et al., 2013: A combination mode of the annual cycle and the El Niño/Southern Oscillation. Nature Geoscience, 6, 540–544.

    Article  Google Scholar 

  • Sun, J. Q., and J.-B. Ahn, 2015: Dynamical seasonal predictability of the Arctic Oscillation using a CGCM. Int. J. Climatol., 35, 1342–1353.

    Article  Google Scholar 

  • Thompson, D. W. J., and J. M. Wallace, 1998: The Arctic oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25, 1297–1300.

    Article  Google Scholar 

  • Thompson, D. W. J., and J. M. Wallace, 2000: Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate, 13, 1000–1016.

    Article  Google Scholar 

  • Thompson, D. W. J., and J. M. Wallace, 2001: Regional climate impacts of the Northern Hemisphere annular mode. Science, 293, 85–89.

    Article  Google Scholar 

  • Visbeck, M. H., J. W. Hurrell, L. Polvani, et al., 2001: The North Atlantic oscillation: Past, present, and future. Proc. Natl. Acad. Sci. USA, 98, 12876–12877.

    Article  Google Scholar 

  • Vitart, F., 2014: Evolution of ECMWF sub-seasonal forecast skill scores. Quart. J. Roy. Meteor. Soc., 140, 1889–1899.

    Article  Google Scholar 

  • Waliser, D., K. Weickmann, R. Dole, et al., 2006: The experimental MJO prediction project. Bull. Amer. Meteor. Soc., 87, 425–431.

    Article  Google Scholar 

  • Wallace, J. M., 2000: North Atlantic Oscillation/annular mode: Two paradigms–one phenomenon. Quart. J. Roy. Meteor. Soc., 126, 791–805.

    Article  Google Scholar 

  • Wang, B., J.-Y. Lee, I.-S. Kang, et al., 2009: Advance and prospectus of seasonal prediction: Assessment of the APCC/Cli-PAS 14-model ensemble retrospective seasonal prediction (1980–2004). Climate Dyn., 33, 93–117.

    Article  Google Scholar 

  • Wang, B., B. Q. Xiang, and J.-Y. Lee, 2013: Subtropical high predictability establishes a promising way for monsoon and tropical storm predictions. Proc. Natl. Acad. Sci. USA, 110, 2718–2722.

    Article  Google Scholar 

  • Wang, H. J., K. Fan, J. Q. Sun, et al., 2015: A review of seasonal climate prediction research in China. Adv. Atmos. Sci., 32, 149–168.

    Article  Google Scholar 

  • Wang, R., and H.-L. Ren, 2017: The linkage of two ENSO types/modes with the interdecadal changes of ENSO around the year 2000. Atmos. Oceanic Sci. Lett., 10, 168–174, doi: 10.1080/16742834.2016.1258952.

    Article  Google Scholar 

  • Wang, S. W., Z. C. Zhao, D. Y. Gong, et al., 2005: An Introduction to Modern Climate Science. China Meteorological Press, Beijing, 1–241. (in Chinese)

    Google Scholar 

  • Wang, W. Q., M. P. Hung, S. J. Weaver, et al., 2014: MJO prediction in the NCEP Climate Forecast System version 2. Climate Dyn., 42, 2509–2520.

    Article  Google Scholar 

  • Wang, X. J., Z. H. Zheng, G. L. Feng, et al., 2015: Summer prediction of sea surface temperatures in key areas in BCC_CSM model. Chinese J. Atmos. Sci., 39, 271–288. (in Chinese)

    Google Scholar 

  • Webster, P. J., and S. Yang, 1992: Monsoon and ENSO: Selectively interactive systems. Quart. J. Roy. Meteor. Soc., 118, 877–926.

    Article  Google Scholar 

  • Webster, P. J., A. M. Moore, J. P. Loschnigg, et al., 1999: Coupled ocean–atmosphere dynamics in the Indian Ocean during 1997–98. Nature, 401, 356–360.

    Article  Google Scholar 

  • Weng, H. Y., K. Ashok, S. K. Behera, et al., 2007: Impacts of recent El Niño Modoki on dry/wet conditions in the Pacific Rim during boreal summer. Climate Dyn., 29, 113–129, doi: 10.1007/s00382-007-0234-0.

    Article  Google Scholar 

  • Wheeler, M. C., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 1917–1932.

    Article  Google Scholar 

  • Winton, M., 2000: A reformulated three-layer sea ice model. J. Atmos. Ocean. Tech., 17, 525–531.

    Article  Google Scholar 

  • Wu, J., H.-L. Ren, C. B. Zhao, et al., 2016a: Research and application of operational MJO monitoring and prediction products in Beijing Climate Center. J. Appl. Meteor. Sci., 27, 641–653, doi: 10.11898/1001-7313.20160601. (in Chinese)

    Google Scholar 

  • Wu, J., H.-L. Ren, J. Q. Zuo, et al., 2016b: MJO prediction skill, predictability, and teleconnection impacts in the Beijing Climate Center Atmospheric General Circulation Model. Dyn. Atmos. Oceans, 75, 78–90, doi: 10.1016/j.dynatmoce.2016. 06.001.

    Article  Google Scholar 

  • Wu, T. W., R. C. Yu, F. Zhang, et al., 2010: The Beijing Climate Center atmospheric general circulation model: Description and its performance for the present-day climate. Climate Dyn., 34, 123–147.

    Article  Google Scholar 

  • Wu, T. W., W. P. Li, J. J. Ji, et al., 2013: Global carbon budgets simulated by the Beijing Climate Center climate system model for the last century. J. Geophys. Res., 118, 4326–4347, doi: 10.1002/jgrd.50320.

    Google Scholar 

  • Wu, T. W., L. C. Song, W. P. Li, et al., 2014: An overview of BCC climate system model development and application for climate change studies. J. Meteor. Res., 28, 34–56.

    Google Scholar 

  • Wu, Z. W., B. Wang, J. P. Li, et al., 2009: An empirical seasonal prediction model of the East Asian summer monsoon using ENSO and NAO. J. Geophys. Res., 114, D18120, doi: 10.1029/2009JD011733.

    Article  Google Scholar 

  • Xiang, B. Q., B. Wang, and T. Li, 2013: A new paradigm for the predominance of standing central Pacific warming after the late 1990s. Climate Dyn., 41, 327–340, doi: 10.1007/s00382-012-1427-8.

    Article  Google Scholar 

  • Xiao, Z. N., H. M. Yan, and C. Y. Li, 2002: The relationship between Indian Ocean SSTA dipole index and the precipitation and temperature over China. J. Trop. Meteor., 18, 335–344. (in Chinese)

    Google Scholar 

  • Xie, S.-P., K. M. Hu, J. Hafner, et al., 2009: Indian Ocean capacitor effect on Indo–western Pacific climate during the summer following El Niño. J. Climate, 22, 730–747.

    Article  Google Scholar 

  • Xue, F., Q. C. Zeng, R. H. Huang, et al., 2015: Recent advances in monsoon studies in China. Adv. Atmos. Sci., 32, 206–229.

    Article  Google Scholar 

  • Yang, J. L., Q. Y. Liu, and Z. Y. Liu, 2010: Linking observations of the Asian monsoon to the Indian Ocean SST: Possible roles of Indian Ocean basin mode and dipole mode. J. Climate, 23, 5889–5902.

    Article  Google Scholar 

  • Yang, J. L., Q. Y. Liu, S.-P. Xie, et al., 2007: Impact of the Indian Ocean SST basin mode on the Asian summer monsoon. Geophys. Res. Lett., 34, L02708.

    Google Scholar 

  • Yang, J. S., and X. W. Jiang, 2014: Prediction of eastern and central Pacific ENSO events and their impacts on East Asian climate by the NCEP climate forecast system. J. Climate, 27, 4451–4472, doi: 10.1175/JCLI-D-13-00471.1.

    Article  Google Scholar 

  • Yang, M. Z., and Y. H. Ding, 2007: A study of the impact of South Indian Ocean Dipole on the summer rainfall in China. Chinese J. Atmos. Sci., 31, 685–694. (in Chinese)

    Google Scholar 

  • Yang, M. Z., Y. H. Ding, W. J. Li, et al., 2007: Leading mode of Indian ocean SST and its impacts on Asian summer monsoon. Acta Meteor. Sinica, 65, 527–536. (in Chinese)

    Google Scholar 

  • Yang, Q. M., 2006: Indian Ocean subtropical dipole and variations of global circulations and rainfall in China. Acta Oceanologica Sinica, 28, 47–56. (in Chinese)

    Google Scholar 

  • Yu, J. Y., and S. T. Kim, 2010: Identification of central-Pacific and eastern-Pacific types of ENSO in CMIP3 models. Geophys. Res. Lett., 37, L15705.

    Google Scholar 

  • Yuan, Y., H. Yang, W. Zhou, et al., 2008: Influences of the Indian Ocean dipole on the Asian summer monsoon in the following year. Int. J. Climatol., 28, 1849–1859, doi: 10.1002/joc.1678.

    Article  Google Scholar 

  • Zebiak, S. E., and M. A. Cane, 1987: A model El Niño–Southern Oscillation. Mon. Wea. Rev., 115, 2262–2278.

    Article  Google Scholar 

  • Zhai, P. M., R. Yu, Y. J. Guo, et al., 2016: The strong El Niño of 2015/16 and its dominant impacts on global and China’s climate. J. Meteor. Res., 30, 283–297.

    Article  Google Scholar 

  • Zhang, C.-D., 2013: Madden–Julian Oscillation: Bridging weather and climate. Bull. Amer. Meteor. Soc., 94, 1849–1870.

    Article  Google Scholar 

  • Zhang, Q. Y., S. Y. Tao, and L. T. Chen, 2003: The inter-annual variability of East Asian summer monsoon indices and its association with the pattern of general circulation over East Asia. Acta Meteor. Sinica, 61, 559–568. (in Chinese)

    Article  Google Scholar 

  • Zhang, R., A. Sumi, and M. Kimoto, 1996: Impact of El Niño on the East Asian monsoon: A diagnostic study of the’ 86/87 and’ 91/92 events. J. Meteor. Soc. Japan, 74, 49–62.

    Google Scholar 

  • Zhang, W. J., F.-F. Jin, J. P. Li, et al., 2011: Contrasting impacts of two-type El Niño over the western North Pacific during boreal autumn. J. Meteor. Soc. Japan, 89, 563–569.

    Article  Google Scholar 

  • Zhang, W. J., F.-F. Jin, H.-L. Ren, et al., 2012: Differences in teleconnection over the North Pacific and rainfall shift over the USA associated with two types of El Niño during boreal autumn. J. Meteor. Soc. Japan, 90, 535–552.

    Article  Google Scholar 

  • Zhao, C. B., T. J. Zhou, L. C. Song, et al., 2014: The boreal summer intraseasonal oscillation simulated by four Chinese AGCMs participating in CMIP5 project. Adv. Atmos. Sci., 31, 1167–1180.

    Article  Google Scholar 

  • Zhao, C. B., H.-L. Ren, L. C. Song, et al., 2015: Madden–Julian Oscillation simulated in BCC climate models. Dyn. Atmos. Oceans, 72, 88–101.

    Article  Google Scholar 

  • Zheng, F., J. Zhu, R.-H. Zhang, et al., 2006: Ensemble hindcasts of SST anomalies in the tropical Pacific using an intermediate coupled model. Geophys. Res. Lett., 33, L19604, doi: 10.1029/2006GL026994.

    Article  Google Scholar 

  • Zhou, T. J., and L. W. Zou, 2010: Understanding the predictability of East Asian summer monsoon from the reproduction of land–sea thermal contrast change in AMIP-Type simulation. J. Climate, 23, 6009–6026.

    Article  Google Scholar 

  • Zhou, W., M. Y. Chen, W. Zhuang, et al., 2016: Evaluation of the tropical variability from the Beijing Climate Center’s realtime operational global ocean data assimilation system. Adv. Atmos. Sci., 33, 208–220, doi: 10.1007/s00376-015-4282-9.

    Article  Google Scholar 

  • Zuo, J. Q., W. J. Li, H.-L. Ren, et al., 2012: Change of the relationship between spring NAO and East Asian summer monsoon and its possible mechanism. Chinese J. Geophys., 55, 384–395. (in Chinese)

    Google Scholar 

  • Zuo, J. Q., W. J. Li, C. H. Sun, et al., 2013: Impact of the North Atlantic sea surface temperature tripole on the East Asian summer monsoon. Adv. Atmos. Sci., 30, 1173–1186.

    Article  Google Scholar 

  • Zuo, J. Q., H.-L. Ren, and W. L. Li, 2015: Contrasting impacts of the Arctic Oscillation on surface air temperature anomalies in southern China between early and middle-to-late winter. J. Climate, 28, 4015–4026.

    Article  Google Scholar 

  • Zuo, J. Q., H.-L. Ren, J. Wu, et al., 2016a: Subseasonal variability and predictability of the Arctic Oscillation/North Atlantic Oscillation in BCC_AGCM2.2. Dyn. Atmos. Oceans, 75, 33–45.

    Article  Google Scholar 

  • Zuo, J. Q., H.-L. Ren, W. J. Li, et al., 2016b: Interdecadal variations in the relationship between the winter North Atlantic Oscillation and temperature in south–central China. J. Climate, 29, 7477–7493, doi: 10.1175/JCLI-D-15-0873.1.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the three anonymous reviewers for their insightful comments, which helped to improve the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Li Ren.

Additional information

Supported by the National (Key) Basic Research and Development (973) Program of China (2015CB453203), China Meteorological Administration Special Public Welfare Research Fund (GYHY201506013 and GYHY201406022), National Natural Science Foundation of China (41205058, 41375062, 41405080, 41505065, 41606019, and 41605116), US National Science Foundation (AGS-1406601), US Department of Energy (DOE) (DE-SC000511), and also partly supported by the UK–China Research & Innovation Partnership Fund through the Met Office Climate Science for Service Partnership (CSSP) China as part of the Newton Fund.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, HL., Jin, FF., Song, L. et al. Prediction of primary climate variability modes at the Beijing Climate Center. J Meteorol Res 31, 204–223 (2017). https://doi.org/10.1007/s13351-017-6097-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13351-017-6097-3

Key words

Navigation