Skip to main content
Log in

Impact of the North Atlantic sea surface temperature tripole on the East Asian summer monsoon

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

A strong (weak) East Asian summer monsoon (EASM) is usually concurrent with the tripole pattern of North Atlantic SST anomalies on the interannual timescale during summer, which has positive (negative) SST anomalies in the northwestern North Atlantic and negative (positive) SST anomalies in the subpolar and tropical ocean. The mechanisms responsible for this linkage are diagnosed in the present study. It is shown that a barotropic wave-train pattern occurring over the Atlantic-Eurasia region likely acts as a link between the EASM and the SST tripole during summer. This wave-train pattern is concurrent with geopotential height anomalies over the Ural Mountains, which has a substantial effect on the EASM. Diagnosis based on observations and linear dynamical model results reveals that the mechanism for maintaining the wave-train pattern involves both the anomalous diabatic heating and synoptic eddy-vorticity forcing. Since the North Atlantic SST tripole is closely coupled with the North Atlantic Oscillation (NAO), the relationships between these two factors and the EASM are also examined. It is found that the connection of the EASM with the summer SST tripole is sensitive to the meridional location of the tripole, which is characterized by large seasonal variations due to the north-south movement of the activity centers of the NAO. The SST tripole that has a strong relationship with the EASM appears to be closely coupled with the NAO in the previous spring rather than in the simultaneous summer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barnston, A. G., and R. E. Livezey, 1987: Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Wea. Rev., 115, 1083–1126.

    Article  Google Scholar 

  • Branstator, G., 1983: Horizontal energy propagation in a barotropic atmosphere with meridional and zonal structure. J. Atmos. Sci., 40, 1689–1708.

    Article  Google Scholar 

  • Branstator, G., 1992: The maintenance of low-frequency atmospheric anomalies. J. Atmos. Sci., 49, 1924–1945.

    Article  Google Scholar 

  • Cayan, D. R., 1992: Latent and sensible heat flux anomalies over the northern oceans: Driving the sea surface temperature. J. Phys. Oceanogr., 22, 859–881.

    Article  Google Scholar 

  • Czaja, A., and C. Frankignoul, 2002: Observed impact of Atlantic SST anomalies on the North Atlantic oscillation. J. Climate, 15, 606–623.

    Article  Google Scholar 

  • Deser, C., and M. Timlin, 1997: Atmosphere-ocean interaction on weekly timescales in the North Atlantic and Pacific. J. Climate, 10, 393–408.

    Article  Google Scholar 

  • Ding, Y. H., 1992: Summer monsoon rainfalls in China. J. Meteor. Soc. Japan., 70, 373–396.

    Google Scholar 

  • Duchon, C., 1979: Lanczos filtering in one and two dimensions. J. Appl. Meteor., 18, 1016–1022.

    Article  Google Scholar 

  • Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106, 447–462.

    Article  Google Scholar 

  • Gu, W., C. Y. Li, X. Wang, W. Zhou, and W. J. Li, 2009: Linkage between mei-yu precipitation and North Atlantic SST on the decadal timescale. Adv. Atmos. Sci., 26, 101–108, doi: 10.1007/s00376-009-0101-5.

    Article  Google Scholar 

  • Han, Z., S. Li, and M. Mu, 2011: The role of warm North Atlantic SST in the formation of positive height anomalies over the Ural Mountains during January 2008. Adv. Atmos. Sci., 28, 246–256, doi: 10.1007/s00376-010-0069-1.

    Article  Google Scholar 

  • Huang, R. H., and W. J. Li, 1987: Influence of the anomaly of heat source over the northwestern tropical Pacific for the subtropical high over East Asia. Proc. Inter. Conf. on the General Circulation of East Asia, Chengdu, China, 40-45.

  • Huang, R. H., and F. Y. Sun, 1992: Impacts of the tropical western Pacific on the East Asian summer monsoon. J. Meteor. Soc. Japan., 70, 243–256.

    Google Scholar 

  • Jin, F.-F., L.-L. Pan, and M. Watanabe, 2006: Dynamics of synoptic eddy and low-frequency flow interaction. Part I: A linear closure. J. Atmos. Sci., 63, 1677–1694.

    Article  Google Scholar 

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–472.

    Article  Google Scholar 

  • Kug, J.-S., and F.-F. Jin, 2009: Left-hand rule for synoptic eddy feedback on low-frequency flow. Geophys. Res. Lett., 36, L05709, doi: 10.1029/2008GL036435.

    Article  Google Scholar 

  • Lau, N.-C., and E. O. Holopainen, 1984: Transient eddy forcing of the time-mean flow as indentified by geopotential tendencies. J. Atmos. Sci., 41, 313–328.

    Article  Google Scholar 

  • Lau, N.-C., and M. J. Nath, 1991: Variability of the baroclinic and barotropic transient eddy forcing associated with monthly changes in the midlatitude storm tracks. J. Atmos. Sci., 48, 2589–2613.

    Article  Google Scholar 

  • Li, J., and J. X. L. Wang, 2003: A new North Atlantic Oscillation index and its variability. Adv. Atmos. Sci., 20, 661–676.

    Article  Google Scholar 

  • Li, S., 2004: Influence of the Northwest Atlantic SST anomaly on the circulation over the Ural Mountains. J. Meteor. Soc. Japan, 82, 971–988.

    Article  Google Scholar 

  • Li, S., and L. Ji, 2001: Background circulation characteristics of the persistent anomalies of the summertime circulation over the Ural Mountains. Acta Meteorologica Sinica, 59, 280–293. (in Chinese)

    Google Scholar 

  • Li., S., M. P. Hoerling, S. Peng, and K. M. Weickmann, 2006: The annular response to tropical Pacific SST forcing. J. Climate, 19, 1802–1819.

    Article  Google Scholar 

  • Li., S., W. A. Robinson, M. P. Hoerling, and K. M. Weickmann, 2007: Dynamics of the extratropical response to a tropical Atlantic SST anomaly. J. Climate, 20, 560–574.

    Article  Google Scholar 

  • Nitta, T., 1987: Convective activities in the tropical western Pacific and their impacts on the Northern Hemisphere summer circulation. J. Meteor. Soc. Japan., 65, 165–171.

    Google Scholar 

  • Ogi, M., Y. Tachibana, and K. Yamazaki, 2003: Impact of the wintertime North Atlantic Oscillation (NAO) on the summertime atmospheric circulation. Geophys. Res. Lett., 30, 1704, doi: 10.1029/2003GL017280.

    Article  Google Scholar 

  • Pan, L.-L., 2007: Synoptic eddy feedback and air-sea interaction in the North Atlantic region. Climate Dyn., 29, 647–659.

    Article  Google Scholar 

  • Pan, L.-L., F.-F. Jin, and M. Watanabe, 2006: Dynamics of synoptic eddy and low-frequency flow interaction. Part III: Baroclinic model results. J. Atmos. Sci., 63, 1709–1725.

    Article  Google Scholar 

  • Peng, S., and J. S. Whitaker, 1999: Mechanisms determining the atmospheric response to midlatitude SST anomalies. J. Climate, 12, 1393–1408.

    Article  Google Scholar 

  • Peng, S., W. A. Robinson, and S. Li, 2003: Mechanisms for the NAO responses to the North Atlantic SST tripole. J. Climate, 16, 1987–2004.

    Article  Google Scholar 

  • Ren, H.-L., F.-F. Jin, J.-S. Kug, J.-X. Zhao, and J. Park, 2009: A kinematic mechanism for positive feedback between synoptic eddies and NAO. Geophys. Res. Lett., 36, L11709, doi: 10.1029/2009GL037294.

    Article  Google Scholar 

  • Ren, H.-L., F.-F. Jin, and L. Gao, 2012: Anatomy of synoptic Eddy-NAO Interaction through eddy structure decomposition. J. Atmos. Sci., 69, 2171–2191.

    Article  Google Scholar 

  • Sardeshmukh, P. D., and B. J. Hoskins, 1988: The generation of global rotational flow by steady idealized tropical divergence. J. Atmos. Sci., 45, 1288–1251.

    Article  Google Scholar 

  • Smith, T. M., R. W. Reynolds, T. C. Peterson, and J. Lawrimore, 2008: Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006). J. Climate, 21, 2283–2296.

    Article  Google Scholar 

  • Sung, M.-K., W.-T. Kwon, H.-J. Baek, K.-O. Boo, G.-H. Lim, and J.-S. Kug, 2006: A possible impact of the North Atlantic Oscillation on the East Asian summer monsoon precipitation. Geophys. Res. Lett., 33, L21713, doi: 10.1029/2006GL027253.

    Article  Google Scholar 

  • Takaya, K., and H. Nakamura, 2001: A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci., 58, 608–627.

    Article  Google Scholar 

  • Trenberth, K. E., G. W. Branstator, D. Karoly, A. Kumar, N.-C. Lau, and C. Ropelewski, 1998: Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res., 103, 14291–14324.

    Article  Google Scholar 

  • Wang, B., and Z. Fan, 1999: Choice of South Asian summer monsoon indices. Bull. Amer. Meteor. Soc., 80, 629–638.

    Article  Google Scholar 

  • Watanabe, M., 2004: Asian jet waveguide and a downstream extension of the North Atlantic oscillation. J. Climate, 17, 4674–4691.

    Article  Google Scholar 

  • Watanabe, M., and M. Kimoto, 2000: Atmosphere-ocean thermal coupling in the North Atlantic: A positive feedback. Quart. J. Roy. Meteor. Soc., 126, 3343–3369.

    Article  Google Scholar 

  • Watanabe, M., and F.-F. Jin, 2003: A moist linear baroclinic model: Coupled dynamical-convective response to El Niño. J. Climate, 16, 1121–1139.

    Article  Google Scholar 

  • Wu, B. Y., and R. H. Zhang, 2011: Interannual variability of the East Asian summer monsoon and its association with the anomalous atmospheric circulation over the mid-high latitudes and external forcing. Acta Meteorologica Sinica, 69, 219–233. (in Chinese)

    Google Scholar 

  • Wu, R., S. Yang, S. Liu, L. Sun, Y. Lian, and Z. Gao, 2010: Change in the relationship between Northeast China summer temperature and ENSO. J. Geophys. Res., 115, D21107, doi: 10.1029/2010JD014422.

    Article  Google Scholar 

  • Wu, R., S. Yang, S. Liu, L. Sun, Y. Lian, and Z. Gao, 2011: Northeast China summer temperature and North Atlantic SST. J. Geophys. Res., 116, D16116, doi: 10.1029/2011JD015779.

    Article  Google Scholar 

  • Wu, Z., B. Wang, J. Li, and F.-F. Jin, 2009: An empirical seasonal prediction model of the East Asian summer monsoon using ENSO and NAO. J. Geophys. Res., 114, D18120, doi: 10.1029/2009JD011733.

    Article  Google Scholar 

  • Xie, P., and P. A. Arkin, 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 2539–2558.

    Article  Google Scholar 

  • Xie, S.-P., and J. A. Carton, 2004: Tropical Atlantic variability: Patterns, mechanisms, and impacts. Earth Climate: The Ocean-Atmosphere Interaction, C. Wang, S.-P. Xie, and J. A. Carton, Eds., Geophysical Monograph, 121–142.

    Chapter  Google Scholar 

  • Zhang, Q. Y., and S. Y. Tao, 1998: Influence of Asian mid-high latitude circulation on East Asian summer rainfall. Acta Meteorologica Sinica, 56, 199–211. (in Chinese)

    Google Scholar 

  • Zhou, T., R. Yu, Y. Gao, and H. Drange, 2006: Oceanatmosphere coupled model simulation of North Atlantic interannual variability I: Local air-sea interaction. Acta Meteorologica Sinica, 64, 1–17. (in Chinese)

    Google Scholar 

  • Zuo, J. Q., W. J. Li, H. L. Ren, and L. J. Chen, 2012: Change of the relationship between spring NAO and East Asian summer monsoon and its possible mechanism. Chinese Journal of Geophysics., 55, 23–34. (in Chinese)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinqing Zuo  (左金清).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zuo, J., Li, W., Sun, C. et al. Impact of the North Atlantic sea surface temperature tripole on the East Asian summer monsoon. Adv. Atmos. Sci. 30, 1173–1186 (2013). https://doi.org/10.1007/s00376-012-2125-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-012-2125-5

Key words

Navigation