Skip to main content

Advertisement

Log in

Interdecadal change of interannual variability and predictability of two types of ENSO

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

A significant interdecadal climate shift of interannual variability and predictability of two types of the El Niño-Southern Oscillation (ENSO), namely the canonical or eastern Pacific (EP)-type and Modoki or central Pacific (CP) type, are investigated. Using the retrospective forecasts of six-state-of-the-art coupled models and their multi-model ensemble (MME) for December–January–February during the period of 1972–2005 along with corresponding observed and reanalyzed data, we examine the climate regime shift that occurred in the winter of 1988/1989 and how the shift affected interannual variability and predictability of two types of ENSO for the two periods of 1972–1988 (hereafter PRE) and 1989–2005 (hereafter POST). The result first shows substantial interdecadal changes of observed sea surface temperature (SST) in mean state and variability over the western and central Pacific attributable to the significant warming trend in the POST period. In the POST period, the SST variability increased (decreased) significantly over the western (eastern) Pacific. The MME realistically reproduces the observed interdecadal changes with 1- and 4-month forecast lead time. It is found that the CP-type ENSO was more prominent and predictable during the POST than the PRE period while there was no apparent difference in the variability and predictability of the EP-type ENSO between two periods. Note that the second empirical orthogonal function mode of the Pacific SST during the POST period represents the CP-type ENSO but that during the PRE period captures the ENSO transition phase. The MME better predicts the former than the latter. We also investigate distinctive regional impacts associated with the two types of ENSO during the two periods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. The Niño3 index is an area-average of the sea surface temperature in the region of 150°W–90°W and 5°S–5°N.

  2. The El Niño Modoki index or EMI is defined as [SSTA]C–0.5[SSTA]E–0.5[SSTA]W, where the square bracket with a subscript represents the area-mean SSTA, averaged over one of the three regions specified as the central (C:165°E–140°W, 10°S–10°N), eastern (E: 110°W–70°W, 15°S–5°N), and western (W: 125°E–145°E, 10°S–20°N).

References

  • Adler RF, Huffman GJ, Chang A, Ferraro R, Xie P, Janowiak J, Rudolf B, Schneider U, Curtis S, Bolvin D, Gruber A, Susskind J, Arkin P, Nelkin E (2003) The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–present). J Hydrometeorol 4:1147–1167

    Article  Google Scholar 

  • Alessandri A, Borrelli A, Masina S, Carril AF, Di Pietro P, Carril AF, Cherchi A, Gualdi S, Navarra A (2010) The INGV-CMCC seasonal prediction system: improved Ocean initial conditions. Mon Weather Rev 138(7):2930–2952

    Article  Google Scholar 

  • Alessandri A, Borrelli A, Navarra A, Arribas A, Déqué M, Rogel P, Weisheimer A (2011) Evaluation of probabilistic quality and value of the ENSEMBLES multi-model seasonal forecasts: comparison with DEMETER. Mon Weather Rev 139(2):581–607

    Article  Google Scholar 

  • An SI (2004) Interdecadal changes in the El Niño-La Nina asymmetry. Geophy Res Lett 31:L23210

    Google Scholar 

  • An SI, Wang B (2000) Interdecadal change of the structure of ENSO mode and its impact on the ENSO frequency. J Clim 13:2044–2055

    Article  Google Scholar 

  • Ashok K, Nakamura H, Yamagata T (2007) Impacts of ENSO and IOD events on the Southern Hemisphere storm track activity during austral winter. J Clim 20:3147–3163

    Article  Google Scholar 

  • Ashok K, Tam CY, Lee WJ (2009) ENSO Modoki impact on the Southern Hemisphere storm track activity during extended austral winter. Geophys Res Lett 36:L12705. doi:10.1029/2009GL038847

    Article  Google Scholar 

  • Balmaseda MA, Vidard A, Anderson D (2008) The ECMWF ORA-S3 ocean analysis system. Mon Weather Rev 136(3):18–34

    Google Scholar 

  • Behringer DW, Xue Y (2004) Evaluation of the global ocean data assimilation system at NCEP: The Pacific Ocean. Eighth symposium on integrated observing and assimilation systems for atmosphere, Oceans, and Land Surface. AMS 84th annual meeting, Washington State Convention and Trade Center, Seattle, Washington, pp 11–15

  • Cai W, Cowan T (2009) La Niña Modoki impacts Australia autumn rainfall variability. Geophys Res Lett 36:L12805. doi:10.1029/2009GL037885

    Article  Google Scholar 

  • Chen M, Xie P, Janowiak JE, Arkin PA (2002) Global land precipitation: a 50-yr monthly analysis based on gauge observations. J Hydrometeorol 3:249–266

    Article  Google Scholar 

  • Collins WJ, Bellouin N, Doutriaux-Boucher M, Gedney N, Hinton T, Jones CD, Liddicoat S, Martin G, O’Connor F, Rae J, Senior C, Totterdell I, Woodward S, Reichler T, Kim J, Halloran P (2008) Evaluation of the HadGEM2 model. Hadley Centre Technical Note HCTN 74, Met Office Hadley Centre, Exeter, UK. http://www.metoffice.gov.uk/learning/library/publications/science/climate-science

  • Daget N, Weaver AT, Balmaseda MA (2009) Ensemble estimation of background-error variances in a three-dimensional variational data assimilation system for the global ocean. Q J R Meteorol Soc 135:1071–1094

    Article  Google Scholar 

  • Diaz HF, Hoerling MP, Eischeid JK (2001) ENSO variability, teleconnections and climate change. Int J Climatol 21:1845–1862

    Article  Google Scholar 

  • Graham NE (1992) Decadal scale climate variability in the 1970s and 1980s: observations and model results: decadal-to-century time scales of climate variability. Academic, New York

    Google Scholar 

  • Graham NE (1994) Decadal scale variability in the tropical and North Pacific during the 1970s and 1980s: observations and model results. Clim Dyn 10:135–162

    Article  Google Scholar 

  • Gu D, Philander S (1997) Interdecadal climate fluctuations that depend on exchanges between the tropics and extratropics. Science 275:805–807

    Article  Google Scholar 

  • Guilyardi E, Bellenger H, Collins M, Ferrett S, Cai W, Wittenberg A (2012) A first look at ENSO in CMIP5. CLIVAR Exch 17:29–32

    Google Scholar 

  • Hare SR, Mantua NJ (2000) Empirical evidence for North Pacific regime shifts in 1977 and 1989. Prog Oceanogr 47:103–145

    Article  Google Scholar 

  • Hendon HH, Lim E, Wang G, Alves O, Hudson D (2009) Prospects for predicting two flavors of El Niño. Geophys Res Lett 36:L19713. doi:10.1029/2009GL040100

    Article  Google Scholar 

  • Hollowed AB, Hare SR, Wooster WS (2001) Pacific basin climate variability and patterns of northeast Pacific marine fish production. Prog Oceanogr 49:257–282

    Article  Google Scholar 

  • Jeong HI, Lee DY, Ashkok K, Ahn JB, Lee JY, Luo JJ, Schemm JK, Hendon HH, Braganza K, Ham YG (2012) Assessment of the APCC coupled MME suite in predicting the distinctive climate impacts of two flavors of ENSO during boreal winter. Clim Dyn 39:475–493

    Article  Google Scholar 

  • Jia XJ, Lin H, Lee JY, Wang B (2012) Season-dependent forecast skill of the leading forced atmospheric circulation pattern over the North Pacific and North American Region. J Clim 25:7248–7265

    Article  Google Scholar 

  • Jia XJ, Lee JY, Lin H (2014) Interdecadal change in the Northern Hemisphere seasonal climate prediction: Part I. The leading forced mode of atmospheric circulation. Clim Dyn. doi:10.1007/s00382-013-1988-1

  • Jin EK, Kinter JL III, Wang B, Park CK, Kang IS, Kirtman BP, Kug JS, Kumar A, Luo JJ, Schemm J, Shukla J, Yamagata T (2008) Current status of ENSO prediction skill in coupled O-A models. Clim Dyn 31:647–664. doi:10.1007/s00382-008-0397-3

    Article  Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Leetma A, Reynolds R, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471

    Article  Google Scholar 

  • Kang H, Park CK, Saji NH, Ashko K (2009) Statistical downscaling of precipitation in Korea using multimodel output variables as predictors. Mon Weather Rev 137:1928–1938

    Article  Google Scholar 

  • Kao HY, Yu JY (2009) Contrasting eastern-Pacific and central-Pacific types of ENSO. J Clim 22:615–632

    Article  Google Scholar 

  • Keenlyside N, Latif M, Botzet M, Jungclaus J, Schulzweida U (2005) A coupled method for initializing el niño southern oscillation forecasts using sea surface temperature. Tellus A 57:340–356

    Article  Google Scholar 

  • Kim ST, Yu JY (2012) The two types of ENSO in CMIP5 models. Geophy Res Lett 39:L11704. doi:10.1029/2012GL052006

    Google Scholar 

  • Kim JS, Kim KY, Yeh SW (2012) Statistical evidence for the natural variation of the central Pacific El Niño. J Geophys Res 117:C06014. doi:10.1029/2012JC008003

    Google Scholar 

  • Kodera K (2010) Change in the ENSO teleconnection characteristics in the boreal winter. SOLA 6A:21–24

    Article  Google Scholar 

  • Kug JS, Jin FF, An SI (2009) Two types of El Niño events: cold tongue El Niño and warm pool El Niño. J Clim 22:1499–1515

    Article  Google Scholar 

  • Larkin NK, Harrison DE (2005) Global seasonal temperature and precipitation anomalies during El Niño autumn and winter. Geophys Res Lett 32:L16705. doi:10.1029/2005GL022860

    Article  Google Scholar 

  • Lee T, McPhaden MJ (2010) Increasing intensity of El Nin˜o in the central-equatorial Pacific. Geophys Res Lett 37:L14603. doi:10.1029/2010GL044007

    Google Scholar 

  • Lee JY, Wang B (2014) Future change of global monsoon in the CMIP5. Clim Dyn 42:101–119. doi:10.1007/s00382-012-1564-0

    Article  Google Scholar 

  • Lee DY, Tam CY, Park CK (2008) Effects of multicumulus convective ensemble on East Asian summer monsoon rainfall simulation. J Geophys Res 113:D24111. doi:10.1029/2008JD009847

    Article  Google Scholar 

  • Lee JY, Wang B, Kang IS, Shukla J, Kumar A, Kug JS, Schemm JKE, Juo JJ, Yamagata T, Fu X, Alves O, Stern B, Rosati T, Park CK (2010) How are seasonal prediction skills related to models performance on mean state and annual cycle? Clim Dyn 35:267–283

    Article  Google Scholar 

  • Lee DY, Ashok K, Ahn JB (2011a) Toward enhancement of prediction skills of multimodel ensemble seasonal prediction: a climate filter concept. J Geophys Res 116:D06116. doi:10.1029/2010JD014610

    Google Scholar 

  • Lee JY, Wang B, Ding Q, Ha KJ, Ahn JB, Kumar A, Stern B, Alves O (2011b) How predictable is the NH summer upper-tropospheric circulation? Clim Dyn 37:1189–1203

    Article  Google Scholar 

  • Lee SS, Lee JY, Ha KJ, Wang B, Schemm JK (2011c) Deficiencies and possibilities for long-lead coupled climate prediction of the western North Pacific-East Asian summer monsoon. Clim Dyn 36:1173–1188

    Article  Google Scholar 

  • Lee JY, Lee SS, Wang B, Ha KJ, Jhun JG (2013) Seasonal prediction and predictability of the Asian winter temperature variability. Clim Dyn 41:573–587

    Article  Google Scholar 

  • Lee JY, Wang B, Seo KH, Kug JS, Choi YS, Kosaka Y, Ha KJ (2014) Future change of Northern Hemisphere summer tropical-extratropical teleconnection in CMIP5 models. J Clim. doi:10.1175/JCLI-D-13-00261.1

  • Lim EP, Hendon HH, Hudson D, Wang G, Alves O (2009) Dynamical forecast of inter–El Niño variations of tropical SST and Australian spring rainfall. Mon Weather Rev 137:3796–3810

    Article  Google Scholar 

  • Lim EP, Hendon HH, Langford S, Alves O (2012) Improvements in POAMA2 for the prediction of major climate drivers and south eastern Australian rainfall. CAWCR Tech. Rep. No. 051. http://www.cawcr.gov.au/publications/technicalreports.php

  • Maslanik JA, Serreze MC, Barry RG (1996) Recent decreases in Arctic summer ice cover and linkages to atmospheric circulation anomalies. Geophys Res Lett 23:1677–1680

    Article  Google Scholar 

  • McPhaden MJ, Lee T, McClurg D (2011) El Niño and its relationship to changing background conditions in the tropical Pacific Ocean. Geophys Res Lett 38:L15709. doi:10.1029/2011GL048275

    Google Scholar 

  • Nitta T, Yamada S (1989) Recent warming of tropical sea surface temperature and its relationship to the Northern Hemisphere circulation. J Meteorol Soc Jpn 67:375–383

    Google Scholar 

  • Overland JE, Wang M (2005) The Arctic climate paradox: tHE recent decrease of the Arctic Oscillation. Geophys Res Lett 32:L06701. doi:10.1029/2004GL021752

    Google Scholar 

  • Peng P, Kumar A, Van den Dool HM, Barnston AG (2002) An analysis of multimodel ensemble predictions for seasonal climate anomalies. J Geophys Res 107(D23):4710. doi:10.1029/2002JD002712

    Article  Google Scholar 

  • Ropelewski CF, Halpert MS (1987) Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon Weather Rev 115:1606–1626

    Article  Google Scholar 

  • Ropelewski CF, Halpert MS (1989) Precipitation patterns associated with the high index phase of the Southern Oscillation. J Clim 2:268–284

    Article  Google Scholar 

  • Saji NH, Yamagata T (2003) Possible impacts of Indian Ocean dipole mode events on global climate. Clim Res 25:151–169

    Article  Google Scholar 

  • Salas-Mélia D (2002) A global coupled sea ice-ocean model. Ocean Model 4:137–172

    Article  Google Scholar 

  • Shi L, Hendon H, Alves O, Luo JJ, Balmaseda M, Anderson D (2012) How predictable is the Indian Ocean Dipole? Mon Weather Rev 140:3867–3884

    Article  Google Scholar 

  • Shinoda T, Hendon HH, Alexander MA (2004) Surface and subsurface dipole variability in the Indian Ocean and its relation to ENSO. Deep-Sea Res 51:619–635

    Article  Google Scholar 

  • Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006). J Clim 21:2283–2296

    Article  Google Scholar 

  • Stevenson S, Fox-Kemper B, Jochum M, Neale R, Deser C, Meehl G (2012) Will there be a significant change to El Nino in the 21st century? J Clim 25:2129–2145

    Article  Google Scholar 

  • Stockdale TN, Anderson DLT, Balmaseda MA, Doblas-Reyes FJ, Ferranti L, Mogensen K, Palmer TN, Molteni F, Vitart F (2011) ECMWF seasonal forecast system 3 and its prediction of sea surface temperature. Clim Dyn 37:455–471

    Article  Google Scholar 

  • Tang Y, Deng Z, Zhou X, Chen Y (2008) Interdecadal variation of enso predictability in multiple models. J Clim 21:4811–4833

    Article  Google Scholar 

  • Taschetto AS, England MH (2009) El Niño Modoki impacts on Australian rainfall. J Clim 22:3167–3174. doi:10.1175/2008JCLI2589.1

    Article  Google Scholar 

  • Trenberth K, Hurrell J (1994) Decadal atmosphere-ocean variations in the pacific. Clim Dyn 9:303–319

    Article  Google Scholar 

  • Wallace JM, Gutzler DS (1981) Teleconnections in the potential height field during the Northern Hemisphere winter. Mon Weather Rev 109:784–812. doi:10.1175/1520-0493

    Article  Google Scholar 

  • Wallace JM, Rasmusson EM, Mitchell TP, Kousky VE, Sarachik ES, Storch H (1998) The structure and evolution of ENSO-related climate variability in the tropical Pacific: lessons from TOGA. J Geophys Res 103(14):241–259

    Google Scholar 

  • Walsh JE, Chapman WL, Shy TL (1996) Recent decrease of sea level pressure in the central Arctic. J Clim 9:480–486

    Article  Google Scholar 

  • Wang G, Hendon HH (2007) Sensitivity of Australian rainfall to inter-El Niño variations. J Clim 20:4211–4226

    Article  Google Scholar 

  • Wang B, Wang Y (1996) Temporal structure of the Southern Oscillation as revealed by waveform and wavelet analysis. J Clim 9:1586–1598

    Article  Google Scholar 

  • Wang B, Lee JY, Kang IS, Shukla J, Kug JS, Kumar A, Schemm J, Luo JJ, Yamagata T, Park CK (2008a) How accurately do coupled climate models predict the leading modes of Asian-Australian monsoon interannual variability? Clim Dyn 30:605–619

    Article  Google Scholar 

  • Wang B, Yang J, Zhou T (2008b) Interdecadal changes in the major modes of Asian-Australian monsoon variability: strengthening relationship with ENSO since the late 1970s. J Clim 21:1771–1789

    Article  Google Scholar 

  • Wang B, Lee JY, Kang IS, Shukla J, Park CK, Kumar A, Schemm J, Cocke S, Kug JS, Luo JJ, Zhou T, Wang B, Fu X, Yun WT, Alves O, Jin EK, Kinter J, Kirtman B, Krishnamurti T, Lau NC, Lau W, Liu P, Pegion P, Rosati T, Schubert S, Stern W, Suarez M, Yamagata T (2009) Advance and prospectus of seasonal prediction: assessment of the APCC/CliPAS 14-model ensemble retrospective seasonal prediction (1980–2004). Clim Dyn 33:93–117

    Article  Google Scholar 

  • Watanabe M, Nitta T (1999) Decadal changes in the atmospheric circulation and associated surface climate variations in the Northern Hemisphere winter. J Clim 12:494–510

    Article  Google Scholar 

  • Weisheimer A, Doblas-Reyes FJ, Palmer TN, Alessandri A, Arribas A, Déqué M, Keenlyside N, MacVean M, Navarra A, Rogel P (2009) Ensembles: a new multi-model ensemble for seasonal-to-annual predictions-skill and progress beyond Demeter in forecasting tropical Pacific SSTs. Geo Res Lett 36:L21711

    Article  Google Scholar 

  • Weng H, Ashok K, Behera SK, Rao SA, Yamagata T (2007) Impacts of recent El Niño Modoki on dry/wet conditions in the Pacific rim during boreal summer. Clim Dyn 29:113–129

    Article  Google Scholar 

  • Weng H, Behera SK, Yamagata T (2009) Anomalous winter climate conditions in the Pacific rim during recent El Niño Modoki and El Niño events. Clim Dyn 32:663–674

    Article  Google Scholar 

  • Wu A, Hsieh W (2003) Nonlinear interdecadal changes of the el niño-southern oscillation. Clim Dyn 21:719–730

    Article  Google Scholar 

  • Yasunaka S, Hanawa K (2003) Regime shifts in the Northern Hemisphere SST field: revisited in relation to tropical variations. J Meteorol Soc Jpn 81:415–424

    Article  Google Scholar 

  • Yeh SW, Kug JS, Dewitte B, Kwon MH, Kirtman BP, Jin FF (2009) El Niño in a changing climate. Nature 461:511–514

    Article  Google Scholar 

  • Yeh SW, Kirtman BP, Kug JS, Park W, Latif M (2011a) Natural variability of the central Pacific El Niño event on multicentennial timescales. Geophys Res Lett 38:L02704. doi:10.1029/2010GL045886

    Google Scholar 

  • Yeh SW, Kang Y, Noh Y, Miller A (2011b) The North Pacific climate transitions of the winters of 1976/77 and 1988/89. J Clim 24:1170–1183

    Article  Google Scholar 

  • Yu JY, Kao HK (2007) Decadal changes of ENSO persistence barrier in SST and ocean heat content indices: 1958–2001. J Geophys Res 112:D13106. doi:10.1029/2006JD007654

    Google Scholar 

  • Yu JY, Lu MM, Kim ST (2012a) A change in the relationship between tropical central Pacific SST variability and the extratropical atmosphere around 1990. Environ Res Lett 7. doi:10.1088/1748-9326/7/3/034025

  • Yu JY, Zou Y, Kim ST, Lee T (2012b) The changing impact of El Niño on US winter temperatures. Geophys Res Lett 39:L15702

    Google Scholar 

Download references

Acknowledgments

We appreciate the anonymous three reviewers for their helpful comments and suggestions. This research was carried out in APEC Climate Center which is fully funded by Korea Meteorological Administration (KMA), Republic of Korea. J.-B. Ahn was supported by Rural Development Administration Cooperative Research Program for Agriculture Science and Technology Development under Grant Project No. PJ009953, Republic of Korea. A. Alessandri was partially supported by the European Commission’s Seventh Framework Research Programme projects CLIMITS under the grant agreement 303208 and SPECS under the grant agreement 308378. This work was also supported by IPRC, which is supported in part by JAMSTEC, NOAA, and NASA. This is the SOEST publication number 9070 and IPRC publication number 1042.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to June-Yi Lee.

Appendix

Appendix

The DJF differences between observed and predicted mean SST are shown in Fig. 12. Most of individual models and MME prediction have a cold bias over the equatorial eastern Pacific. On the other hands, the coupled models and their MME well reproduce the spatial distribution of observed mean SST showing higher skill of pattern correlations.

Fig. 12
figure 12

DJF difference between observed mean SST and one-month lead MME prediction (a) and individual models (bg) for 1972–2005. Pattern correlation coefficients between the observed and model predicted mean SST are also given at the top of each figures

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, HI., Ahn, JB., Lee, JY. et al. Interdecadal change of interannual variability and predictability of two types of ENSO. Clim Dyn 44, 1073–1091 (2015). https://doi.org/10.1007/s00382-014-2127-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-014-2127-3

Keywords

Navigation