Skip to main content

Advertisement

Log in

A new paradigm for the predominance of standing Central Pacific Warming after the late 1990s

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Canonical El Niño has a warming center in the eastern Pacific (EP), but in recent decades, El Niño warming center tends to occur more frequently in the central Pacific (CP). The definitions and names of this new type of El Niño, however, have been notoriously diverse, which makes it difficult to understand why the warming center shifts. Here, we show that the new type of El Niño events is characterized by: 1) the maximum warming standing and persisting in the CP and 2) the warming extending to the EP only briefly during its peak phase. For this reason, we refer to it as standing CP warming (CPW). Global warming has been blamed for the westward shift of maximum warming as well as more frequent occurrence of CPW. However, we find that since the late 1990s the standing CPW becomes a dominant mode in the Pacific; meanwhile, the epochal mean trade winds have strengthened and the equatorial thermocline slope has increased, contrary to the global warming-induced weakening trades and flattening thermocline. We propose that the recent predominance of standing CPW arises from a dramatic decadal change characterized by a grand La Niña-like background pattern and strong divergence in the CP atmospheric boundary layer. After the late 1990s, the anomalous mean CP wind divergence tends to weaken the anomalous convection and shift it westward from the underlying SST warming due to the suppressed low-level convergence feedback. This leads to a westward shift of anomalous westerly response and thus a zonally in-phase SST tendency, preventing eastward propagation of the SST anomaly. We anticipate more CPW events will occur in the coming decade provided the grand La Niña-like background state persists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Adler RF et al (2003) The Version 2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present). J Hydrometeor 4:1147–1167

    Article  Google Scholar 

  • An S-I, Wang B (2000) Interdecadal change of the structure of ENSO mode and its impact on the ENSO frequency. J Clim 13:2044–2055

    Article  Google Scholar 

  • Ashok K, Behera S, Rao AS, Weng H, Yamagata T (2007) El Niño Modoki and its teleconnection. J Geophys Res 112:C11007. doi:10.1029/2006JC003798

    Article  Google Scholar 

  • Behringer DW, Xue Y (2004) Evaluation of the global ocean data assimilation system at NCEP: The Pacific Ocean. eighth symposium on integrated observing and assimilation systems for atmosphere, oceans, and land surface, AMS 84th Annual Meeting, Washington State Convention and Trade Center, Seattle, Washington, pp 11–15

  • Bjerknes J (1969) Atmospheric teleconnections from the equatorial Pacific. Mon Wea Rev 97:163–172

    Article  Google Scholar 

  • Cane MA, Münnich M, Zebiak SE (1990) A study of self-excited oscillations of the tropical ocean-atmosphere system. Part I: liner analysis. J Atmos Sci 47:1562–1577

    Article  Google Scholar 

  • Chen G, Tam CY (2010) Different impacts of two kinds of Pacific Ocean warming on tropical cyclone frequency over the western North Pacific. Geophys Res Lett 37:L01803. doi:10.1029/2009GL041708

    Google Scholar 

  • Choi J, An S-I, Kug J-S, Yeh S-W (2011) The role of mean state on changes in El Niño’s flavor. Clim Dyn 37:1205–1215. doi:10.1007/s00382-010-0912-1

    Google Scholar 

  • Ding Q, Steig EJ, Battisti DS, Küttel M (2011) Winter warming in West Antarctica caused by central Pacific warming. Nat Geosci 4:39–403

    Article  Google Scholar 

  • Fedorov AV, Philander SGH (2000) Is El Niño changing? Science 288:1997–2002. doi:10.1126/science.288.5473.1997

    Article  Google Scholar 

  • Ham Y-G, Kug J-S (2011) How well do current climate models simulate two-type of El Niño? Clim Dyn. doi:10.1007/s00382-011-1157-3

  • Hong C–C, Li Y-H, Li T, Lee M-Y (2011) Impacts of central Pacific and eastern Pacific El Niños on tropical cyclone tracks over the western North Pacific. Geophys Res Lett 38:L16712. doi:10.1029/2011GL048821

    Google Scholar 

  • Jin F-F, Kim ST, Bejarano L (2006) A coupled stability index for ENSO. Geophys Res Lett 33:L23708. doi:101029/2006GL027221

    Article  Google Scholar 

  • Kanamitsu M et al (2002) NCEP-DEO AMIP-II Reanalysis (R-2). Bull Amer Met Soc 83:1631–1643

    Article  Google Scholar 

  • Kao H-Y, Yu J-Y (2009) Contrasting eastern-Pacific and central Pacific types of El Niño. J Clim 22:615–632. doi:10.1175/2008JCLI2309.1

    Article  Google Scholar 

  • Kim H, Webster P, Curry J (2009) Impact of shifting patterns of Pacific Ocean warming on north Atlantic tropical cyclones. Science 325:77–80

    Article  Google Scholar 

  • Kucharski F, Kang I-S, Farneti R, Feudale L (2011) Tropical Pacific response to 20th century Atlantic warming. Geophys Res Lett 38:L03702. doi:10.1029/2010GL046248

    Article  Google Scholar 

  • Kug J-S, Jin F–F, An SA (2009) Two types of El Niño events: cold tongue El Niño and warm pool El Niño. J Clim 22:1499–1515. doi:10.1175/2008JCLI2624.1

    Article  Google Scholar 

  • Kumar KK, Rajagopalan B, Hoerling M, Bates G, Cane M (2006) Unraveling the mystery of Indian Monsoon failure during El Niño. Science 314:115–119

    Article  Google Scholar 

  • Larkin NK, Harrison DE (2005) Global seasonal temperature and precipitation anomaly during El Niño autumn and winter. Geophys Res Lett 32:L16705. doi:10.1029/2005GL022860

    Article  Google Scholar 

  • Lee T, McPhaden MJ (2010) Increasing intensity of El Niño in the central-equatorial Pacific. Geophys Res Lett 37:L14603. doi:10.1029/2010GL044007

    Google Scholar 

  • Li T (1997) Phase transition of the El Niño-Southern Oscillation: a stationary SST mode. J Atmos Sci 54:2872–2887

    Article  Google Scholar 

  • Li T, Hogan TF (1999) The role of the annual mean climate on seasonal and interannual variability of the tropical Pacific in a coupled GCM. J Clim 12:780–792

    Article  Google Scholar 

  • Lorenzo Di et al (2010) Central Pacific El Niño and decadal climate change in the North Pacific Ocean. Nat Geosci 3:762–765

    Article  Google Scholar 

  • McPhaden MJ, Lee T, McClurg D (2011) El Niño and its relationship to changing background conditions in the tropical Pacific Ocean. Geophys Res Lett 38:L15709. doi:10.1029/2011GL048275

    Article  Google Scholar 

  • Park J-S, Yeh S-W, Kug J-S (2012) Revisited relationship between tropical and North Pacific sea surface temperature variations. Geophys Res Lett 39:L02703. doi:10.1029/2011GL050005

    Article  Google Scholar 

  • Roeckner E (1996) The atmospheric general circulation model ECHAM-4: model description and simulation of present-day climate. Max-Planck-Institute Meteorol Rep 218:90

    Google Scholar 

  • Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAA’s Historical Merged Land-Ocean Surface Temperature Analysis (1880–2006). J Clim 21:2283–2293

    Article  Google Scholar 

  • Solomon S et al (2010) Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science 327:1219–1223

    Article  Google Scholar 

  • Su J, Zhang R, Li T, Rong X, Kug J-S, Hong C–C (2010) Amplitude asymmetry of El Niño and La Niña in the eastern equatorial Pacific. J Clim 23(3):605–617

    Article  Google Scholar 

  • Suarez MJ, Schopf PS (1988) A delayed action oscillator for ENSO. J Atmos Sci 45:3283–3287

    Article  Google Scholar 

  • Vecchi GA, Soden BJ (2007) Global warming and the weakening of the tropical circulation. J Clim 20:4316–4340

    Article  Google Scholar 

  • Wang B (1995) Interdecadal changes in El Niño onset in the last four decades. J Clim 8:258–267

    Google Scholar 

  • Wang B, Liu J, Kim H-J, Webster PJ, Yim S-Y (2011) Recent change of global monsoon precipitation (1979–2008). Clim Dyn. doi:10.1007/s00382-011-1266-z

  • Weng H, Ashok K, Behera WK, Rao SA, Yamagata T (2007) Impacts of recent El Niño Modoki on dry/wet conditions in the Pacific rim during boreal summer. Clim Dyn 29:113–129

    Article  Google Scholar 

  • Weng H, Behera S, Yamagata T (2009) Anomalous winter climate conditions in the Pacific Rim during recent El Niño Modoki and El Niño events. Clim Dyn 32:663–674. doi:10.1007/s00382-008-0394-6

    Article  Google Scholar 

  • Xiang B, Wang B, Ding Q, Jin F–F, Fu X, Kim H-J (2011) Reduction of the thermocline feedback associated with mean SST bias in ENSO simulation. Clim Dyn. doi:10.1007/s00382-011-1164-4

    Google Scholar 

  • Yeh S-W, Kug J-S, Dewitte B, Kwon M-H, Kirtman B, Jin F–F (2009) El Niño in a changing climate. Nature 461:511–514. doi:10.1038/nature08316

    Article  Google Scholar 

  • Yeh S-W, Kirtman BP, Kug J-S, Park W, Latif M (2011) Natural variability of the central Pacific El Niño event on multi-centennial timescales. Geophys Res Lett 38:L02704. doi:10.1029/2010GL045886

    Article  Google Scholar 

  • Yu J-Y, Kao H-Y, Lee T (2010) Subtropics-related interannual sea surface temperature variability in the central equatorial Pacific. J Clim 23:2869–2884

    Article  Google Scholar 

  • Zebiak SE (1986) Atmospheric convergence feedback in a simple model for El Niño. Mon Wea Rev 114:1263–1271

    Article  Google Scholar 

  • Zebiak SE, Cane MA (1987) A Model El-Niño Southern Oscillation. Mon Wea Rev 115:2262–2278

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Mark A Cane and Jong-Seong Kug for their comments and suggestions on this study. This work has been supported by the Climate Dynamics Program of the National Science Foundation under award No. AGS-1005599, and APEC Climate Center. The authors acknowledge partial support from International Pacific Research Center which is sponsored by the JAMSTEC, NASA (NNX07AG53G) and NOAA (NA09OAR4320075). TL is supported by ONR grant N000141210450. This is SOEST contribution number 8690 and IPRC contribution number 895.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baoqiang Xiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiang, B., Wang, B. & Li, T. A new paradigm for the predominance of standing Central Pacific Warming after the late 1990s. Clim Dyn 41, 327–340 (2013). https://doi.org/10.1007/s00382-012-1427-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-012-1427-8

Keywords

Navigation