Skip to main content

Advertisement

Log in

Unravelling the role of microneedles in drug delivery: Principle, perspectives, and practices

  • Review Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

In recent year, the research of transdermal drug delivery systems has got substantial attention towards the development of microneedles (MNs). This shift has occurred due to multifaceted advantages of MNs as they can be utilized to deliver the drug deeper to the skin with minimal invasion, offer successful delivery of drugs and biomolecules that are susceptible to degradation in gastrointestinal tract (GIT), act as biosensors, and help in monitoring the level of biomarkers in the body. These can be fabricated into different types based on their applications as well as material for fabrication. Some of their types include solid MNs, hollow MNs, coated MNs, hydrogel forming MNs, and dissolving MNs. These MNs deliver the therapeutics via microchannels deeper into the skin. The coated and hollow MNs have been found successful. However, they suffer from poor drug loading and blocking of pores. In contrast, dissolving MNs offer high drug loading. These MNs have also been utilized to deliver vaccines and biologicals. They have also been used in cosmetics. The current review covers the different types of MNs, materials used in their fabrication, properties of MNs, and various case studies related to their role in delivering therapeutics, monitoring level of biomarkers/hormones in body such as insulin. Various patents and clinical trials related to MNs are also covered. Covered are the major bottlenecks associated with their clinical translation and potential future perspectives.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Adapted from Tucak et al. 2020 [9]

Fig. 5

Adapted from Li et al. 2019 [155]

Fig. 6

Adapted from Kim et al. 2022 [171]

Fig. 7
Fig. 8

Adapted from Bolton et al. 2020 [207]

Fig. 9

© 2004 British Association of Dermatologists

Fig. 10

© 2020 American Pharmacists Association, Elsevier

Fig. 11

© 2020 American Pharmacists Association, Elsevier

Fig. 12

© 2014, Springer Science Business Media New York

Fig. 13

© 2014, Springer Science Business Media New York

Fig. 14

© 2013 Elsevier B.V

Fig. 15

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  1. Siafaka PI, Özcan Bülbül E, Okur ME, Karantas ID, Üstündağ Okur N. The application of nanogels as efficient drug delivery platforms for dermal/transdermal delivery. Gels (Basel, Switzerland). 2023;9:753. Available from: https://pubmed.ncbi.nlm.nih.gov/37754434/.

  2. Bhandari KH, Lee DX, Newa M, Yoon S Il, Kim JS, Kim DD, et al. Evaluation of skin permeation and accumulation profiles of a highly lipophilic fatty ester. Arch Pharm Res. 2008;31:242–9.

  3. Alvarez-Román R, Naik A, Kalia YN, Guy RH, Fessi H. Skin penetration and distribution of polymeric nanoparticles. J Control release Off J Control Release Soc. 2004;99:53–62.

    Article  Google Scholar 

  4. Jeong WY, Kwon M, Choi HE, Kim KS. Recent advances in transdermal drug delivery systems: a review. Biomater Res. 2021;25:24. Available from: https://doi.org/10.1186/s40824-021-00226-6.

  5. Mahesh KV, Singh SK, Gulati M. A comparative study of top-down and bottom-up approaches for the preparation of nanosuspensions of glipizide. Powder Technol. 2014;256:436–49. Available from: https://www.sciencedirect.com/science/article/pii/S0032591014001211.

  6. Zhang S, Yang L, Liu J, Li H, Hong S, Hong L. Microneedle systems: cell, exosome, and nucleic acid based strategies. Biomater Sci. 2023.

  7. Turner JG, White LR, Estrela P, Leese HS. Hydrogel-forming microneedles: current advancements and future trends. Macromol Biosci. 2021;21:e2000307.

    Article  PubMed  Google Scholar 

  8. Larrañeta E, Lutton REM, Woolfson AD, Donnelly RF. Microneedle arrays as transdermal and intradermal drug delivery systems: materials science, manufacture and commercial development. Mater Sci Eng R Reports. 2016;104:1–32.

    Article  Google Scholar 

  9. Tucak A, Sirbubalo M, Hindija L, Rahić O, Hadžiabdić J, Muhamedagić K, et al. Microneedles: characteristics, materials, production methods and commercial development. Micromachines. 2020;11.

  10. Chambers R. Microdissection studies, III. Some problems in the maturation and fertilization of the echinoderm egg. Biol Bull. 1921;41:318–50.

  11. Khan S, Hasan A, Attar F, Babadaei MMN, Zeinabad HA, Salehi M, et al. Diagnostic and drug release systems based on microneedle arrays in breast cancer therapy. J Control release Off J Control Release Soc. 2021;338:341–57.

    Article  CAS  Google Scholar 

  12. Gao X, Zhang F, Huang Y, Hu W, Chen Y, Jiang L, et al. Site-Specifically launched microneedles for the combined treatment of psoriasis-diabetic comorbidity. ACS Appl Mater Interfaces. 2023;15:46613–25.

    Article  CAS  PubMed  Google Scholar 

  13. Wang X, Ma Y, Qi X, Ruan X, Cao D, Zhao F. Practicality of non-invasive glucagon-loaded dissolving microneedle for life-saving treatment of severe hypoglycemia in a diabetic rat model. Int J Pharm. 2023;644:123340.

    Article  CAS  PubMed  Google Scholar 

  14. Liu JF, GhavamiNejad A, Lu B, Mirzaie S, Samarikhalaj M, Giacca A, et al. “Smart” matrix microneedle patch made of self-crosslinkable and multifunctional polymers for delivering insulin on-demand. Adv Sci (Weinheim, Baden-Wurttemberg, Ger. 2023;e2303665.

  15. Sharma S, Hatware K, Bhadane P, Sindhikar S, Mishra DK. Recent advances in microneedle composites for biomedical applications: advanced drug delivery technologies. Mater Sci Eng C Mater Biol Appl. 2019;103:109717.

    Article  CAS  PubMed  Google Scholar 

  16. Jung JH, Jin SG. Microneedle for transdermal drug delivery: current trends and fabrication. J Pharm Investig. 2021;1–15.

  17. Cheng T, Tai Z, Shen M, Li Y, Yu J, Wang J, et al. Advance and challenges in the treatment of skin diseases with the transdermal drug delivery system. Pharmaceutics. 2023;15.

  18. Xie L, Zeng H, Sun J, Qian W. Engineering microneedles for therapy and diagnosis: a survey. Micromachines. 2020;11.

  19. Waghule T, Singhvi G, Dubey SK, Pandey MM, Gupta G, Singh M, et al. Microneedles: a smart approach and increasing potential for transdermal drug delivery system. Biomed Pharmacother. 2019;109:1249–58.

    Article  CAS  PubMed  Google Scholar 

  20. Kenchegowda M, Hani U, Al Fatease A, Haider N, Ramesh KVRNS, Talath S, et al. Tiny titans- unravelling the potential of polysaccharides and proteins based dissolving microneedles in drug delivery and theranostics: a comprehensive review. Int J Biol Macromol. 2023;253:127172.

  21. Lee J, Beukema M, Zaplatynska OA, O’Mahony C, Hinrichs WLJ, Huckriede ALW, et al. Efficient fabrication of thermo-stable dissolving microneedle arrays for intradermal delivery of influenza whole inactivated virus vaccine. Biomater Sci. 2023;11:6790–800.

    Article  CAS  PubMed  Google Scholar 

  22. Ito S, Hirobe S, Kawakita T, Saito M, Quan Y-S, Kamiyama F, et al. Characteristic of K3 (CpG-ODN) as a transcutaneous vaccine formulation adjuvant. Pharmaceutics. 2020;12.

  23. Weng J, Zheng G, Wen J, Yang J, Yang Q, Zheng X, et al. Construction and application of microneedle-mediated photothermal therapy and immunotherapy combined anti-tumor drug delivery system. Drug Deliv. 2023;30:2232950.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Caudill C, Perry JL, Iliadis K, Tessema AT, Lee BJ, Mecham BS, et al. Transdermal vaccination via 3D-printed microneedles induces potent humoral and cellular immunity. Proc Natl Acad Sci USA. 2021;118.

  25. Jiang S, Bian J, Shi X, Hu Y. Thermosensitive microneedles capable of on demand insulin release for precise diabetes treatment. Macromol Biosci. 2023;23:e2300018.

    Article  PubMed  Google Scholar 

  26. Liu G, Deng Y, Song Y, Sui Y, Cen J, Shao Z, et al. Transdermal delivery of adipocyte phospholipase A2 siRNA using microneedles to treat thyroid associated ophthalmopathy-related proptosis. Cell Transplant. 2021;30:9636897211010632.

    Article  Google Scholar 

  27. Lee JW, Choi S-O, Felner EI, Prausnitz MR. Dissolving microneedle patch for transdermal delivery of human growth hormone. Small. 2011;7:531–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bernelin-Cottet C, Urien C, McCaffrey J, Collins D, Donadei A, McDaid D, et al. Electroporation of a nanoparticle-associated DNA vaccine induces higher inflammation and immunity compared to its delivery with microneedle patches in pigs. J Control release Off J Control Release Soc. 2019;308:14–28.

    Article  CAS  Google Scholar 

  29. Skoog SA, Miller PR, Boehm RD, Sumant AV, Polsky R, Narayan RJ. Nitrogen-incorporated ultrananocrystalline diamond microneedle arrays for electrochemical biosensing. Diam Relat Mater. 2015;54:39–46.

    Article  CAS  Google Scholar 

  30. Tu J, Du G, Reza Nejadnik M, Mönkäre J, van der Maaden K, Bomans PHH, et al. Mesoporous silica nanoparticle-coated microneedle arrays for intradermal antigen delivery. Pharm Res. 2017;34:1693–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Donnelly RF, Singh TRR, Garland MJ, Migalska K, Majithiya R, McCrudden CM, et al. Hydrogel-forming microneedle arrays for enhanced transdermal drug delivery. Adv Funct Mater. 2012;22:4879–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen F, Yan Q, Yu Y, Wu MX. BCG vaccine powder-laden and dissolvable microneedle arrays for lesion-free vaccination. J Control release Off J Control Release Soc. 2017;255:36–44.

    Article  CAS  Google Scholar 

  33. Yu W, Jiang G, Liu D, Li L, Chen H, Liu Y, et al. Fabrication of biodegradable composite microneedles based on calcium sulfate and gelatin for transdermal delivery of insulin. Mater Sci Eng C Mater Biol Appl. 2017;71:725–34.

    Article  CAS  PubMed  Google Scholar 

  34. Fernando GJP, Zhang J, Ng H-I, Haigh OL, Yukiko SR, Kendall MAF. Influenza nucleoprotein DNA vaccination by a skin targeted, dry coated, densely packed microprojection array (Nanopatch) induces potent antibody and CD8(+) T cell responses. J Control release Off J Control Release Soc. 2016;237:35–41.

    Article  CAS  Google Scholar 

  35. Ma G, Wu C. Microneedle, bio-microneedle and bio-inspired microneedle: a review. J Control Release. 2017;251:11–23. Available from: https://pubmed.ncbi.nlm.nih.gov/28215667/.

  36. Luo H, Zan F, Cui J. Effect of microneedle roller on promoting transdermal absorption of crossbow-medicine liquid via transdermal administration of Traditional Chinese Medicine and the safety of crossbow-medicine needle therapy: an experimental study. J Ethnopharmacol. 2023;317:116751.

    Article  CAS  PubMed  Google Scholar 

  37. Bhatnagar S, Dave K, Venuganti VVK. Microneedles in the clinic. J Control release Off J Control Release Soc. 2017;260:164–82.

    Article  CAS  Google Scholar 

  38. Henry S, McAllister DV, Allen MG, Prausnitz MR. Microfabricated microneedles: a novel approach to transdermal drug delivery. J Pharm Sci. 1998;87:922–5.

    Article  CAS  PubMed  Google Scholar 

  39. Finnin BC, Morgan TM. Transdermal penetration enhancers: applications, limitations, and potential. J Pharm Sci. 1999;88:955–8.

    Article  CAS  PubMed  Google Scholar 

  40. Singh V, Kesharwani P. Recent advances in microneedles-based drug delivery device in the diagnosis and treatment of cancer. J Control release Off J Control Release Soc. 2021;338:394–409.

    Article  CAS  Google Scholar 

  41. Chen Y, Chen BZ, Wang QL, Jin X, Guo XD. Fabrication of coated polymer microneedles for transdermal drug delivery. J Control release Off J Control Release Soc. 2017;265:14–21.

    Article  CAS  Google Scholar 

  42. Zhou Z, Zhang S, Yang G, Gao Y. Enhanced delivery efficiency and sustained release of biopharmaceuticals by complexation-based gel encapsulated coated microneedles: rhIFNα-1b example. Asian J Pharm Sci. 2021;16:612–22.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Zhang W, Zhang W, Li C, Zhang J, Qin L, Lai Y. Recent advances of microneedles and their application in disease treatment. Int J Mol Sci. 2022;23.

  44. Giudice EL, Campbell JD. Needle-free vaccine delivery. Adv Drug Deliv Rev. 2006;58:68–89.

    Article  CAS  PubMed  Google Scholar 

  45. Chinnamani MV, Hanif A, Kannan PK, Kaushal S, Sultan MJ, Lee N-E. Soft microfiber-based hollow microneedle array for stretchable microfluidic biosensing patch with negative pressure-driven sampling. Biosens Bioelectron. 2023;237:115468.

    Article  CAS  PubMed  Google Scholar 

  46. He R, Niu Y, Li Z, Li A, Yang H, Xu F, et al. A hydrogel microneedle patch for point-of-care testing based on skin interstitial fluid. Adv Healthc Mater. 2020;9:e1901201.

    Article  PubMed  Google Scholar 

  47. Du G, He P, Zhao J, He C, Jiang M, Zhang Z, et al. Polymeric microneedle-mediated transdermal delivery of melittin for rheumatoid arthritis treatment. J Control release Off J Control Release Soc. 2021;336:537–48.

    Article  CAS  Google Scholar 

  48. Lee W-J, Han M-R, Kim J-S, Park J-H. A tearable dissolving microneedle system for shortening application time. Expert Opin Drug Deliv. 2019;16:199–206.

    Article  CAS  PubMed  Google Scholar 

  49. Sullivan SP, Murthy N, Prausnitz MR. Minimally invasive protein delivery with rapidly dissolving polymer microneedles. Adv Mater. 2008;20:933–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Vora LK, Moffatt K, Tekko IA, Paredes AJ, Volpe-Zanutto F, Mishra D, et al. Microneedle array systems for long-acting drug delivery. Eur J Pharm Biopharm Off J Arbeitsgemeinschaft fur Pharm Verfahrenstechnik eV. 2021;159:44–76.

    Article  CAS  Google Scholar 

  51. Kirkby M, Hutton ARJ, Donnelly RF. Microneedle mediated transdermal delivery of protein, peptide and antibody based therapeutics: current status and future considerations. Pharm Res. 2020;37:117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ahmed Saeed Al-Japairai K, Mahmood S, Hamed Almurisi S, Reddy Venugopal J, Rebhi Hilles A, Azmana M, et al. Current trends in polymer microneedle for transdermal drug delivery. Int J Pharm. 2020;587:119673.

  53. Donnelly RF, Morrow DIJ, McCarron PA, David Woolfson A, Morrissey A, Juzenas P, et al. Microneedle arrays permit enhanced intradermal delivery of a preformed photosensitizer. Photochem Photobiol. 2009;85:195–204.

    Article  CAS  PubMed  Google Scholar 

  54. Khanna P, Luongo K, Strom JA, Bhansali S. Sharpening of hollow silicon microneedles to reduce skin penetration force. J Micromech Microeng. 2010;20:45011.

    Article  Google Scholar 

  55. Khanna P, Luongo K, Strom JA, Bhansali S. Axial and shear fracture strength evaluation of silicon microneedles. Microsyst Technol. 2010;16:973–8.

    Article  CAS  Google Scholar 

  56. Ji J, Tay FEH, Miao J, Iliescu C. Microfabricated microneedle with porous tip for drug delivery. J Micromech Microeng. 2006;16:958.

    Article  CAS  Google Scholar 

  57. Bariya SH, Gohel MC, Mehta TA, Sharma OP. Microneedles: an emerging transdermal drug delivery system. J Pharm Pharmacol. 2012;64:11–29. Available from: https://pubmed.ncbi.nlm.nih.gov/22150668/.

  58. Pradeep Narayanan S, Raghavan S. Solid silicon microneedles for drug delivery applications. Int J Adv Manuf Technol. 2017;93:407–22.

    Article  Google Scholar 

  59. Mishra R, Maiti TK, Bhattacharyya TK. Development of SU-8 hollow microneedles on a silicon substrate with microfluidic interconnects for transdermal drug delivery. J Micromech Microeng. 2018;28:105017.

    Article  Google Scholar 

  60. Pradeep Narayanan S, Raghavan S. Fabrication and characterization of gold-coated solid silicon microneedles with improved biocompatibility. Int J Adv Manuf Technol. 2019;104:3327–33.

    Article  Google Scholar 

  61. Tabassum N, Alba M, Yan L, Voelcker NH. Porous silicon microneedles for enhanced transdermal drug delivery. Adv Ther. 2023;6:2200156.

    Article  CAS  Google Scholar 

  62. Dervisevic M, Alba M, Adams TE, Prieto-Simon B, Voelcker NH. Electrochemical immunosensor for breast cancer biomarker detection using high-density silicon microneedle array. Biosens Bioelectron. 2021;192:113496.

    Article  CAS  PubMed  Google Scholar 

  63. Roh H, Yoon YJ, Park JS, Kang D-H, Kwak SM, Lee BC, et al. Fabrication of high-density out-of-plane microneedle arrays with various heights and diverse cross-sectional shapes. Nano-Micro Lett. 2022;14:1–19.

    Article  Google Scholar 

  64. Chandbadshah S, Mannayee G. Structural analysis and simulation of solid microneedle array for vaccine delivery applications. Mater Today Proc. 2022;65:3774–9.

    Article  Google Scholar 

  65. Wang M, Han Y, Yu X, Liang L, Chang H, Yeo DC, et al. Upconversion nanoparticle powered microneedle patches for transdermal delivery of siRNA. Adv Healthc Mater. 2020;9:1900635.

    Article  CAS  Google Scholar 

  66. Ali R, Mehta P, Arshad MS, Kucuk I, Chang MW, Ahmad Z. Transdermal microneedles—a materials perspective. AAPS PharmSciTech. 2020;21:1–14.

    Article  Google Scholar 

  67. Mdanda S, Ubanako P, Kondiah PPD, Kumar P, Choonara YE. Recent advances in microneedle platforms for transdermal drug delivery technologies. Polymers (Basel). 2021;13:2405.

    Article  CAS  PubMed  Google Scholar 

  68. Dharadhar S, Majumdar A, Dhoble S, Patravale V. Microneedles for transdermal drug delivery: a systematic review. Drug Dev Ind Pharm. 2019;45:188–201.

    Article  CAS  PubMed  Google Scholar 

  69. Mathew E, Pitzanti G, Gomes Dos Santos AL, Lamprou DA. Optimization of printing parameters for digital light processing 3D printing of hollow microneedle arrays. Pharmaceutics. 2021;13. Available from: https://pubmed.ncbi.nlm.nih.gov/34834250/.

  70. Lee S, Jeong W, Beebe DJ. Microfluidic valve with cored glass microneedle for microinjection. Lab Chip. 2003;3:164–7.

    Article  CAS  PubMed  Google Scholar 

  71. Mahadevan G, Sheardown H, Selvaganapathy P. PDMS embedded microneedles as a controlled release system for the eye. J Biomater Appl. 2013;28:20–7.

    Article  CAS  PubMed  Google Scholar 

  72. Verhoeven M, Bystrova S, Winnubst L, Qureshi H, de Gruijl TD, Scheper RJ, et al. Applying ceramic nanoporous microneedle arrays as a transport interface in egg plants and an ex-vivo human skin model. Microelectron Eng. 2012;98:659–62.

    Article  CAS  Google Scholar 

  73. Boks MA, Unger WWJ, Engels S, Ambrosini M, van Kooyk Y, Luttge R. Controlled release of a model vaccine by nanoporous ceramic microneedle arrays. Int J Pharm. 2015;491:375–83.

    Article  CAS  PubMed  Google Scholar 

  74. Li J, Zhou Y, Yang J, Ye R, Gao J, Ren L, et al. Fabrication of gradient porous microneedle array by modified hot embossing for transdermal drug delivery. Mater Sci Eng C. 2019;96:576–82.

    Article  CAS  Google Scholar 

  75. Gholami S, Mohebi M-M, Hajizadeh-Saffar E, Ghanian M-H, Zarkesh I, Baharvand H. Fabrication of microporous inorganic microneedles by centrifugal casting method for transdermal extraction and delivery. Int J Pharm. 2019;558:299–310.

    Article  CAS  PubMed  Google Scholar 

  76. Yu W, Jiang G, Liu D, Li L, Tong Z, Yao J, et al. Transdermal delivery of insulin with bioceramic composite microneedles fabricated by gelatin and hydroxyapatite. Mater Sci Eng C Mater Biol Appl. 2017;73:425–8.

    Article  CAS  PubMed  Google Scholar 

  77. Wang Z, Li H, Wang J, Chen Z, Chen G, Wen D, et al. Transdermal colorimetric patch for hyperglycemia sensing in diabetic mice. Biomaterials. 2020;237:119782.

    Article  CAS  PubMed  Google Scholar 

  78. Gholami S, Mohebi M-M, Hajizadeh-Saffar E, Ghanian M-H, Zarkesh I, Baharvand H. Corrigendum to “Fabrication of microporous inorganic microneedles by centrifugal casting method for transdermal extraction and delivery”. Int J Pharm. 558:2019;299–310. Int J Pharm. Netherlands. 2021;120890.

  79. Zhang Y, Jiang G, Yu W, Liu D, Xu B. Microneedles fabricated from alginate and maltose for transdermal delivery of insulin on diabetic rats. Mater Sci Eng C Mater Biol Appl. 2018;85:18–26.

    Article  CAS  PubMed  Google Scholar 

  80. Niinomi M, Nakai M. Titanium-based biomaterials for preventing stress shielding between implant devices and bone. Int J Biomater. 2011;2011:836587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Gittard SD, Narayan RJ. Applications of microneedle technology to transdermal drug delivery. Toxicol Ski. CRC Press. 2010;315–30.

  82. Ma Y, Gill HS. Coating solid dispersions on microneedles via a molten dip-coating method: development and in vitro evaluation for transdermal delivery of a water-insoluble drug. J Pharm Sci. 2014;103:3621–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lanza R, Langer R, Vacanti JP, Atala A. Principles of tissue engineering. Academic press. 2020.

  84. Chen M-C, Huang S-F, Lai K-Y, Ling M-H. Fully embeddable chitosan microneedles as a sustained release depot for intradermal vaccination. Biomaterials. 2013;34:3077–86.

    Article  CAS  PubMed  Google Scholar 

  85. Schmidt M, Goebeler M. Immunology of metal allergies. J der Dtsch Dermatologischen Gesellschaft. J Ger Soc Dermatol. JDDG. 2015;13:653–60.

  86. Yu Z, Tetard L, Zhai L, Thomas J. Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions. Energy Environ Sci. 2015;8:702–30.

    Article  CAS  Google Scholar 

  87. Bartolomeu F, Costa MM, Alves N, Miranda G, Silva FS. Engineering the elastic modulus of NiTi cellular structures fabricated by selective laser melting. J Mech Behav Biomed Mater. 2020;110:103891.

    Article  CAS  PubMed  Google Scholar 

  88. Niinomi M. Biologically and mechanically biocompatible titanium alloys. Mater Trans. 2008;49:2170–8.

    Article  CAS  Google Scholar 

  89. Gad SC, McCord MG. Safety evaluation in the development of medical devices and combination products. CRC Press. 2008.

  90. Luu E, Ita KB, Morra MJ, Popova IE. The influence of microneedles on the percutaneous penetration of selected antihypertensive agents: diltiazem hydrochloride and perindopril erbumine. Curr Drug Deliv. 2018;15:1449–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ellison TJ, Talbott GC, Henderson DR. VaxiPatch™, a novel vaccination system comprised of subunit antigens, adjuvants and microneedle skin delivery: an application to influenza B/Colorado/06/2017. Vaccine. 2020;38:6839–48.

    Article  CAS  PubMed  Google Scholar 

  92. Mugo SM, Lu W, Lemieux S. Stainless steel electrochemical capacitive microneedle sensors for multiplexed simultaneous measurement of pH, nitrates, and phosphates. Mikrochim Acta. 2022;189:206.

    Article  CAS  PubMed  Google Scholar 

  93. Li J, Liu B, Zhou Y, Chen Z, Jiang L, Yuan W, et al. Fabrication of a Ti porous microneedle array by metal injection molding for transdermal drug delivery. PLoS ONE. 2017;12:e0172043.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Zandi A, Khayamian MA, Saghafi M, Shalileh S, Katebi P, Assadi S, et al. Microneedle-based generation of microbubbles in cancer tumors to improve ultrasound-assisted drug delivery. Adv Healthc Mater. 2019;8:1900613.

    Article  Google Scholar 

  95. Lee K, Lee CY, Jung H. Dissolving microneedles for transdermal drug administration prepared by stepwise controlled drawing of maltose. Biomaterials. 2011;32:3134–40.

    Article  CAS  PubMed  Google Scholar 

  96. Donnelly R, Douroumis D. Microneedles for drug and vaccine delivery and patient monitoring. Drug Deliv. Transl Res. United States. 2015;311–2.

  97. Loizidou EZ, Williams NA, Barrow DA, Eaton MJ, McCrory J, Evans SL, et al. Structural characterisation and transdermal delivery studies on sugar microneedles: experimental and finite element modelling analyses. Eur J Pharm Biopharm. 2015;89:224–31. Available from: https://pubmed.ncbi.nlm.nih.gov/25481031/.

  98. Li G, Badkar A, Nema S, Kolli CS, Banga AK. In vitro transdermal delivery of therapeutic antibodies using maltose microneedles. Int J Pharm. 2009;368:109–15.

    Article  CAS  PubMed  Google Scholar 

  99. Deng YL, Juang YJ. Polydimethyl siloxane wet etching for three dimensional fabrication of microneedle array and high-aspect-ratio micropillars. Biomicrofluidics. 2014;8. Available from: https://pubmed.ncbi.nlm.nih.gov/24803970/.

  100. Donnelly RF, Morrow DIJ, Singh TRR, Migalska K, McCarron PA, O’Mahony C, et al. Processing difficulties and instability of carbohydrate microneedle arrays. Drug Dev Ind Pharm. 2009;35:1242–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Zeng Y, Gao Y, He L, Ge W, Liu J, Yu Y, et al. Multifunctional polysaccharide composited microneedle for oral ulcers healing. Mater today Bio. 2023;22:100782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Du W, Li X, Zhang M, Ling G, Zhang P. Investigation of the antibacterial properties of hyaluronic acid microneedles based on chitosan and MoS(2). J Mater Chem B. 2023;11:7169–81.

    Article  CAS  PubMed  Google Scholar 

  103. Manna S, Gupta P, Nandi G, Jana S. Recent update on alginate based promising transdermal drug delivery systems. J Biomater Sci Polym Ed. 2023;1–28.

  104. Yang J, Chu Z, Jiang Y, Zheng W, Sun J, Xu L, et al. Multifunctional hyaluronic acid microneedle patch embedded by cerium/zinc-based composites for accelerating diabetes wound healing. Adv Healthc Mater. 2023;12:e2300725.

    Article  PubMed  Google Scholar 

  105. Demir YK, Metin AÜ, Şatıroğlu B, Solmaz ME, Kayser V, Mäder K. Poly (methyl vinyl ether-co-maleic acid) - pectin based hydrogel-forming systems: gel, film, and microneedles. Eur J Pharm Biopharm Off J Arbeitsgemeinschaft fur Pharm Verfahrenstechnik eV. 2017;117:182–94.

    Article  CAS  Google Scholar 

  106. Wu T, Hou X, Li J, Ruan H, Pei L, Guo T, et al. Microneedle-mediated biomimetic cyclodextrin metal organic frameworks for active targeting and treatment of hypertrophic scars. ACS Nano. 2021;15:20087–104.

    Article  CAS  PubMed  Google Scholar 

  107. Chen BZ, Li WX, Feng YH, Zhang XP, Jiao J, Li ZL, et al. Functional insulin aspart/insulin degludec-based microneedles for promoting postprandial glycemic control. Acta Biomater. 2023.

  108. Tian Y, Lee J, van der Maaden K, Bhide Y, de Vries-Idema JJ, Akkerman R, et al. Intradermal administration of influenza vaccine with trehalose and pullulan-based dissolving microneedle arrays. J Pharm Sci. 2022;111:1070–80.

    Article  CAS  PubMed  Google Scholar 

  109. Zhang X, Liu W, Wang W, Pi M, Huang B, Wu F. Evaluation of gum arabic double-layer microneedle patch containing sumatriptan for loading and transdermal delivery. Curr Drug Deliv. 2023.

  110. Zhou L, Ramezani H, Sun M, Xie M, Nie J, Lv S, et al. 3D printing of high-strength chitosan hydrogel scaffolds without any organic solvents. Biomater Sci. 2020;8:5020–8.

    Article  PubMed  Google Scholar 

  111. Markovsky E, Baabur-Cohen H, Eldar-Boock A, Omer L, Tiram G, Ferber S, et al. Administration, distribution, metabolism and elimination of polymer therapeutics. J Control release. 2012;161:446–60.

    Article  CAS  PubMed  Google Scholar 

  112. Goh CH, Heng PWS, Chan LW. Alginates as a useful natural polymer for microencapsulation and therapeutic applications. Carbohydr Polym. 2012;88:1–12.

    Article  CAS  Google Scholar 

  113. Chiu Y-H, Chen M-C, Wan S-W. Sodium hyaluronate/chitosan composite microneedles as a single-dose intradermal immunization system. Biomacromol. 2018;19:2278–85.

    Article  CAS  Google Scholar 

  114. Yi X, Wang C, Yu X, Su W, Yuan Z. Chitosan/zinc nitrate microneedles for bacterial biofilm eradication. J Biomed Mater Res Part B Appl Biomater. 2021;109:911–20.

    Article  CAS  Google Scholar 

  115. Yu J, Zhang Y, Ye Y, DiSanto R, Sun W, Ranson D, et al. Microneedle-array patches loaded with hypoxia-sensitive vesicles provide fast glucose-responsive insulin delivery. Proc Natl Acad Sci U S A. 2015;112:8260–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Lanza R, Langer R, Vacanti JP. Principles of tissue engineering, 4th. 2013.

  117. Wang R, Jiang G, Aharodnikau UE, Yunusov K, Sun Y, Liu T, et al. Recent advances in polymer microneedles for drug transdermal delivery: design strategies and applications. Macromol Rapid Commun. 2022;43:2200037.

    Article  CAS  Google Scholar 

  118. Zhu DD, Zhang XP, Yu HL, Liu RX, Shen CB, Zhang WF, et al. Kinetic stability studies of HBV vaccine in a microneedle patch. Int J Pharm. 2019;567:118489.

    Article  CAS  PubMed  Google Scholar 

  119. Littauer EQ, Mills LK, Brock N, Esser ES, Romanyuk A, Pulit-Penaloza JA, et al. Stable incorporation of GM-CSF into dissolvable microneedle patch improves skin vaccination against influenza. J Control Release. 2018;276:1–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Amodwala S, Kumar P, Thakkar HP. Statistically optimized fast dissolving microneedle transdermal patch of meloxicam: a patient friendly approach to manage arthritis. Eur J Pharm Sci. 2017;104:114–23. Available from: https://pubmed.ncbi.nlm.nih.gov/28385631/.

  121. Donnelly RF, Singh TRR, Morrow DIJ, Woolfson AD. Microneedle-mediated transdermal and intradermal drug delivery. 2012.

  122. Sharifuzzaman M, Shin Y Do, Yoo J, Reza MS, Kim Y-R, Park JY. An oxygen-insensitive and minimally invasive polymeric microneedle sensor for continuous and wide-range transdermal glucose monitoring. Talanta. 2023;263:124747.

  123. Grayson ACR, Voskerician G, Lynn A, Anderson JM, Cima MJ, Langer R. Differential degradation rates in vivo and in vitro of biocompatible poly (lactic acid) and poly (glycolic acid) homo-and co-polymers for a polymeric drug-delivery microchip. J Biomater Sci Polym Ed. 2004;15:1281–304.

    Article  CAS  PubMed  Google Scholar 

  124. Makadia HK, Siegel SJ. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers (Basel). 2011;3:1377–97.

    Article  CAS  PubMed  Google Scholar 

  125. Tian Z, Cheng J, Liu J, Zhu Y. Dissolving graphene/poly (acrylic acid) microneedles for potential transdermal drug delivery and photothermal therapy. J Nanosci Nanotechnol. 2019;19:2453–9.

    Article  CAS  PubMed  Google Scholar 

  126. Mao J, Wang H, Xie Y, Fu Y, Li Y, Liu P, et al. Transdermal delivery of rapamycin with poor water-solubility by dissolving polymeric microneedles for anti-angiogenesis. J Mater Chem B. 2020;8:928–34.

    Article  CAS  PubMed  Google Scholar 

  127. Kim JS, Choi J, Kim JC, Park H, Yang E, Park JS, et al. Microneedles with dual release pattern for improved immunological efficacy of Hepatitis B vaccine. Int J Pharm. 2020;591:119928.

    Article  CAS  PubMed  Google Scholar 

  128. Abdelghany S, Alshaer W, Al Thaher Y, Al Fawares M, Al-Bakri AG, Zuriekat S, et al. Ciprofloxacin-loaded dissolving polymeric microneedles as a potential therapeutic for the treatment of S. aureus skin infections. Beilstein J Nanotechnol. 2022;13:517–27.

  129. Matadh AV, Jakka D, Pragathi SG, Rangappa S, Shivakumar HN, Maibach H, et al. Polymer-Coated Polymeric (PCP) Microneedles for controlled dermal delivery of 5-fluorouracil. AAPS PharmSciTech. 2022;24:9.

    Article  PubMed  Google Scholar 

  130. Li Y, Hu X, Dong Z, Chen Y, Zhao W, Wang Y, et al. Dissolving microneedle arrays with optimized needle geometry for transcutaneous immunization. Eur J Pharm Sci. 2020;151:105361.

    Article  CAS  PubMed  Google Scholar 

  131. Pan J, Ruan W, Qin M, Long Y, Wan T, Yu K, et al. Intradermal delivery of STAT3 siRNA to treat melanoma via dissolving microneedles. Sci Rep. 2018;8:1–11.

    Google Scholar 

  132. Cole G, Ali AA, McCrudden CM, McBride JW, McCaffrey J, Robson T, et al. DNA vaccination for cervical cancer: strategic optimisation of RALA mediated gene delivery from a biodegradable microneedle system. Eur J Pharm Biopharm Off J Arbeitsgemeinschaft fur Pharm Verfahrenstechnik eV. 2018;127:288–97.

    Article  CAS  Google Scholar 

  133. Kim NW, Kim S-Y, Lee JE, Yin Y, Lee JH, Lim SY, et al. Enhanced cancer vaccination by in situ nanomicelle-generating dissolving microneedles. ACS Nano. 2018;12:9702–13.

    Article  CAS  PubMed  Google Scholar 

  134. Wang C, Ye Y, Hochu GM, Sadeghifar H, Gu Z. Enhanced cancer immunotherapy by microneedle patch-assisted delivery of anti-PD1 antibody. Nano Lett. 2016;16:2334–40.

    Article  CAS  PubMed  Google Scholar 

  135. Zaric M, Lyubomska O, Touzelet O, Poux C, Al-Zahrani S, Fay F, et al. Skin dendritic cell targeting via microneedle arrays laden with antigen-encapsulated poly-D, L-lactide-co-glycolide nanoparticles induces efficient antitumor and antiviral immune responses. ACS Nano. 2013;7:2042–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Tawde SA, Chablani L, Akalkotkar A, D’Souza MJ. Evaluation of microparticulate ovarian cancer vaccine via transdermal route of delivery. J Control release Off J Control Release Soc. 2016;235:147–54.

    Article  CAS  Google Scholar 

  137. Chablani L, Tawde SA, Akalkotkar A, D’Souza MJ. Evaluation of a particulate breast cancer vaccine delivered via skin. AAPS J. 2019;21:12.

    Article  PubMed  Google Scholar 

  138. Castilla-Casadiego DA, Miranda-Muñoz KA, Roberts JL, Crowell AD, Gonzalez-Nino D, Choudhury D, et al. Biodegradable microneedle patch for delivery of meloxicam for managing pain in cattle. PLoS ONE. 2022;17:e0272169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Chellathurai MS, Ling VWT, Palanirajan VK. Fabrication and evaluation of transdermal microneedles for a recombinant human keratinocyte growth factor. Turkish J Pharm Sci. 2021;18:96–103.

    Article  CAS  Google Scholar 

  140. Yang H, Kang G, Jang M, Um DJ, Shin J, Kim H, et al. Development of lidocaine-loaded dissolving microneedle for rapid and efficient local anesthesia. Pharmaceutics. 2020;12.

  141. Prabhu A, Jose J, Kumar L, Salwa S, Vijay Kumar M, Nabavi SM. Transdermal delivery of curcumin-loaded solid lipid nanoparticles as microneedle patch: an in vitro and in vivo study. AAPS PharmSciTech. 2022;23:49.

    Article  CAS  PubMed  Google Scholar 

  142. Liu S, Jin M, Quan Y, Kamiyama F, Katsumi H, Sakane T, et al. The development and characteristics of novel microneedle arrays fabricated from hyaluronic acid, and their application in the transdermal delivery of insulin. J Control release Off J Control Release Soc. 2012;161:933–41.

    Article  CAS  Google Scholar 

  143. Ryall C, Chen S, Duarah S, Wen J. Chitosan-based microneedle arrays for dermal delivery of Centella asiatica. Int J Pharm. 2022;627:122221.

    Article  CAS  PubMed  Google Scholar 

  144. Arshad MS, Gulfam S, Zafar S, Jalil NA, Ahmad N, Qutachi O, et al. Engineering of tetanus toxoid-loaded polymeric microneedle patches. Drug Deliv Transl Res. 2023;13:852–61.

    Article  CAS  PubMed  Google Scholar 

  145. Roy G, Garg P, Venuganti VVK. Microneedle scleral patch for minimally invasive delivery of triamcinolone to the posterior segment of eye. Int J Pharm. 2022;612:121305.

    Article  CAS  PubMed  Google Scholar 

  146. Leelawattanachai J, Panyasu K, Prasertsom K, Manakasettharn S, Duangdaw H, Budthong P, et al. Highly stable and fast dissolving ascorbic acid-loaded microneedles. Int J Cosmet Sci. 2023.

  147. Razali AR, Qin Y. A review on micro-manufacturing, micro-forming and their key issues. Procedia Eng. 2013;53:665–72.

    Article  Google Scholar 

  148. Nuxoll E. BioMEMS in drug delivery. Adv Drug Deliv Rev. 2013;65:1611–25.

    Article  CAS  PubMed  Google Scholar 

  149. Madou MJ. Fundamentals of microfabrication and nanotechnology: manufacturing techniques and applications. From MEMS to Bio-MEMS and Bio-NEMS: CRC Press. 2012.

    Google Scholar 

  150. Perennes F, Marmiroli B, Matteucci M, Tormen M, Vaccari L, Di Fabrizio E. Sharp beveled tip hollow microneedle arrays fabricated by LIGA and 3D soft lithography with polyvinyl alcohol. J Micromechanics Microengineering. 2006;16:473.

    Article  CAS  Google Scholar 

  151. Ita K. Transdermal delivery of drugs with microneedles: strategies and outcomes. J Drug Deliv Sci Technol. 2015;29:16–23.

    Article  CAS  Google Scholar 

  152. Wilke N, Mulcahy A, Ye S-R, Morrissey A. Process optimization and characterization of silicon microneedles fabricated by wet etch technology. Microelectronics J. 2005;36:650–6.

    Article  CAS  Google Scholar 

  153. Liu Y, Eng PF, Guy OJ, Roberts K, Ashraf H, Knight N. Advanced deep reactive-ion etching technology for hollow microneedles for transdermal blood sampling and drug delivery. IET nanobiotechnology. 2013;7:59–62. Available from: https://pubmed.ncbi.nlm.nih.gov/24046906/.

  154. Roxhed N, Gasser TC, Griss P, Holzapfel GA, Stemme G. Penetration-enhanced ultrasharp microneedles and prediction on skin interaction for efficient transdermal drug delivery. J Microelectromechanical Syst. 2007;16:1429–40.

    Article  Google Scholar 

  155. Li Y, Zhang H, Yang R, Laffitte Y, Schmill U, Hu W, et al. Fabrication of sharp silicon hollow microneedles by deep-reactive ion etching towards minimally invasive diagnostics. Microsystems Nanoeng. 2019;5:1–11.

    Article  Google Scholar 

  156. Dardano P, De Martino S, Battisti M, Miranda B, Rea I, De Stefano L. One-shot fabrication of polymeric hollow microneedles by standard photolithography. Polymers (Basel). 2021;13:1–13. Available from: https://pubmed.ncbi.nlm.nih.gov/33572383/.

  157. Martanto W, Davis SP, Holiday NR, Wang J, Gill HS, Prausnitz MR. Transdermal delivery of insulin using microneedles in vivo. Pharm Res. 2004;21:947–52.

    Article  CAS  PubMed  Google Scholar 

  158. Gill HS, Prausnitz MR. Coating formulations for microneedles. Pharm Res. 2007;24:1369–80.

    Article  CAS  PubMed  Google Scholar 

  159. Albarahmieh E, AbuAmmouneh L, Kaddoura Z, AbuHantash F, Alkhalidi BA, Al-Halhouli A. Fabrication of dissolvable microneedle patches using an innovative laser-cut mould design to shortlist potentially transungual delivery systems: In vitro evaluation. AAPS PharmSciTech. 2019;20:1–14.

    Article  CAS  Google Scholar 

  160. Silvestre SL, Araújo D, Marques AC, Pires C, Matos M, Alves V, et al. Microneedle arrays of polyhydroxyalkanoate by laser-based micromolding technique. ACS Appl bio Mater. 2020;3:5856–64.

    Article  CAS  PubMed  Google Scholar 

  161. Lee CY, Lee K, You YS, Lee SH, Jung H. Tower microneedle via reverse drawing lithography for innocuous intravitreal drug delivery. Adv Healthc Mater. 2013;2:812–6.

    Article  CAS  PubMed  Google Scholar 

  162. Omatsu T, Chujo K, Miyamoto K, Okida M, Nakamura K, Aoki N, et al. Metal microneedle fabrication using twisted light with spin. Opt Express. 2010;18:17967–73.

    Article  CAS  PubMed  Google Scholar 

  163. Evens T, Malek O, Castagne S, Seveno D, Van Bael A. A novel method for producing solid polymer microneedles using laser ablated moulds in an injection moulding process. Manuf Lett. 2020;24:29–32. Available from: https://www.sciencedirect.com/science/article/pii/S2213846319301336.

  164. Norman JJ, Choi S-O, Tong NT, Aiyar AR, Patel SR, Prausnitz MR, et al. Hollow microneedles for intradermal injection fabricated by sacrificial micromolding and selective electrodeposition. Biomed Microdevices. 2013;15:203–10.

    Article  PubMed  PubMed Central  Google Scholar 

  165. Park J-H, Allen MG, Prausnitz MR. Biodegradable polymer microneedles: fabrication, mechanics and transdermal drug delivery. J Control release Off J Control Release Soc. 2005;104:51–66.

    Article  CAS  Google Scholar 

  166. McCrudden MTC, Alkilani AZ, McCrudden CM, McAlister E, McCarthy HO, Woolfson AD, et al. Design and physicochemical characterisation of novel dissolving polymeric microneedle arrays for transdermal delivery of high dose, low molecular weight drugs. J Control release Off J Control Release Soc. 2014;180:71–80.

    Article  CAS  Google Scholar 

  167. Donnelly RF, Majithiya R, Singh TRR, Morrow DIJ, Garland MJ, Demir YK, et al. Design, optimization and characterisation of polymeric microneedle arrays prepared by a novel laser-based micromoulding technique. Pharm Res. 2011;28:41–57. Available from: https://pubmed.ncbi.nlm.nih.gov/20490627/.

  168. Indermun S, Luttge R, Choonara YE, Kumar P, Du Toit LC, Modi G, et al. Current advances in the fabrication of microneedles for transdermal delivery. J Control Release. 2014;185:130–8. Available from: https://pubmed.ncbi.nlm.nih.gov/24806483/.

  169. Kang S, Song JE, Jun S-H, Park S-G, Kang N-G. Sugar-triggered burst drug releasing poly-lactic acid (PLA) microneedles and its fabrication based on solvent-casting approach. Pharmaceutics. 2022;14.

  170. Braunecker WA, Matyjaszewski K. Erratum to: “Controlled, living radical polymerization: features, developments and perspectives”. Prog Polym Sci. 2008;1:165

  171. Kim S, Lee H, Choi H, Yoo K-Y, Yoon H. Investigation on photopolymerization of PEGDA to fabricate high-aspect-ratio microneedles. RSC Adv. 2022;12:9550–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Matyjaszewski K, Davis TP. Handbook of radical polymerization. Wiley Online Library. 2002.

  173. Kolli CS, Banga AK. Characterization of solid maltose microneedles and their use for transdermal delivery. Pharm Res. 2008;25:104–13. Available from: https://doi.org/10.1007/s11095-007-9350-0.

  174. McGrath MG, Vucen S, Vrdoljak A, Kelly A, O’Mahony C, Crean AM, et al. Production of dissolvable microneedles using an atomised spray process: effect of microneedle composition on skin penetration. Eur J Pharm Biopharm. 2014;86:200–11. Available from: https://pubmed.ncbi.nlm.nih.gov/23727511/.

  175. Wu L, Takama N, Park J, Kim B, Kim J, Jeong D, Shadow mask assisted droplet-born air-blowing method for fabrication of dissoluble microneedle. IEEE 12th Int Conf Nano/Micro Eng Mol Syst. IEEE. 2017;2017:456–9.

    Google Scholar 

  176. Kim JD, Bae JH, Kim HK, Jeong DH. Droplet-born air blowing (DAB) technology for the industrialization of dissolving microneedle. Proc World Congr Recent Adv Nanotechnology, Prague, Czech Repub. 2016;1–2.

  177. Huh I, Kim S, Yang H, Jang M, Kang G, Jung H. Effects of two droplet-based dissolving microneedle manufacturing methods on the activity of encapsulated epidermal growth factor and ascorbic acid. Eur J Pharm Sci. 2018;114:285–92.

    Article  CAS  PubMed  Google Scholar 

  178. Kim JD, Kim M, Yang H, Lee K, Jung H. Droplet-born air blowing: novel dissolving microneedle fabrication. J Control release. 2013;170:430–6.

    Article  CAS  PubMed  Google Scholar 

  179. Gupta J, Felner EI, Prausnitz MR. Minimally invasive insulin delivery in subjects with type 1 diabetes using hollow microneedles. Diabetes Technol Ther. 2009;11:329–37. Available from: https://pubmed.ncbi.nlm.nih.gov/19459760/.

  180. Martanto W, Moore JS, Kashlan O, Kamath R, Wang PM, O’Neal JM, et al. Microinfusion using hollow microneedles. Pharm Res. 2006;23:104–13. Available from: https://pubmed.ncbi.nlm.nih.gov/16308670/.

  181. Wu M, Zhang Y, Huang H, Li J, Liu H, Guo Z, et al. Assisted 3D printing of microneedle patches for minimally invasive glucose control in diabetes. Mater Sci Eng C Mater Biol Appl. 2020;117. Available from: https://pubmed.ncbi.nlm.nih.gov/32919660/.

  182. Yadav V, Sharma PK, Murty US, Mohan NH, Thomas R, Dwivedy SK, et al. 3D printed hollow microneedles array using stereolithography for efficient transdermal delivery of rifampicin. Int J Pharm. 2021;605. Available from: https://pubmed.ncbi.nlm.nih.gov/34153441/.

  183. Vancauwenberghe V, Verboven P, Lammertyn J, Nicolaï B. Development of a coaxial extrusion deposition for 3D printing of customizable pectin-based food simulant. J Food Eng. 2018;225:42–52. Available from: https://www.sciencedirect.com/science/article/pii/S0260877418300141.

  184. Lupone F, Padovano E, Casamento F, Badini C. Process phenomena and material properties in selective laser sintering of polymers: a review. Mater (Basel, Switzerland). 2021;15.

  185. Liu T, Shao Y, Wang Z, Chen Y, Pang Y, Weng D, et al. 3D Printing of in vitro hydrogel microcarriers by alternating viscous-inertial force jetting. J Vis Exp. 2021.

  186. Tarbox TN, Watts AB, Cui Z, Williams RO 3rd. An update on coating/manufacturing techniques of microneedles. Drug Deliv Transl Res. 2018;8:1828–43.

    Article  CAS  PubMed  Google Scholar 

  187. Ameri M, Kadkhodayan M, Nguyen J, Bravo JA, Su R, Chan K, et al. Human growth hormone delivery with a microneedle transdermal system: preclinical formulation, stability, delivery and PK of therapeutically relevant doses. Pharmaceutics. 2014;6:220–34.

    Article  PubMed  PubMed Central  Google Scholar 

  188. Caudill CL, Perry JL, Tian S, Luft JC, DeSimone JM. Spatially controlled coating of continuous liquid interface production microneedles for transdermal protein delivery. J Control release Off J Control Release Soc. 2018;284:122–32.

    Article  CAS  Google Scholar 

  189. McGrath MG, Vrdoljak A, O’Mahony C, Oliveira JC, Moore AC, Crean AM. Determination of parameters for successful spray coating of silicon microneedle arrays. Int J Pharm. 2011;415:140–9.

    Article  CAS  PubMed  Google Scholar 

  190. Vrdoljak A, McGrath MG, Carey JB, Draper SJ, Hill AVS, O’Mahony C, et al. Coated microneedle arrays for transcutaneous delivery of live virus vaccines. J Control release Off J Control Release Soc. 2012;159:34–42.

    Article  CAS  Google Scholar 

  191. Haj-Ahmad R, Khan H, Arshad MS, Rasekh M, Hussain A, Walsh S, et al. Microneedle coating techniques for transdermal drug delivery. Pharmaceutics. 2015;7:486–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Chen X, Prow TW, Crichton ML, Jenkins DWK, Roberts MS, Frazer IH, et al. Dry-coated microprojection array patches for targeted delivery of immunotherapeutics to the skin. J Control release Off J Control Release Soc. 2009;139:212–20.

    Article  CAS  Google Scholar 

  193. Chen X, Fernando GJP, Crichton ML, Flaim C, Yukiko SR, Fairmaid EJ, et al. Improving the reach of vaccines to low-resource regions, with a needle-free vaccine delivery device and long-term thermostabilization. J Control release Off J Control Release Soc. 2011;152:349–55.

    Article  CAS  Google Scholar 

  194. Derby B. Inkjet printing of functional and structural materials: fluid property requirements, feature stability, and resolution. Annu Rev Mater Res. 2010;40:395–414.

    Article  CAS  Google Scholar 

  195. Boehm RD, Miller PR, Daniels J, Stafslien S, Narayan RJ. Inkjet printing for pharmaceutical applications. Mater Today. 2014;17:247–52.

    Article  CAS  Google Scholar 

  196. Uddin MJ, Scoutaris N, Klepetsanis P, Chowdhry B, Prausnitz MR, Douroumis D. Inkjet printing of transdermal microneedles for the delivery of anticancer agents. Int J Pharm. 2015;494:593–602. Available from: https://pubmed.ncbi.nlm.nih.gov/25617676/.

  197. Boehm RD, Daniels J, Stafslien S, Nasir A, Lefebvre J, Narayan RJ. Polyglycolic acid microneedles modified with inkjet-deposited antifungal coatings. Biointerphases. 2015;10:011004. Available from: https://pubmed.ncbi.nlm.nih.gov/25732934/.

  198. Bakhshi R, Ahmad Z, Soric M, Stride E, Edirisinghe M. Nanoparticle delivery systems formed using electrically sprayed co-flowing excipients and active agent. J Biomed Nanotechnol. 2011;7:782–93. Available from: https://pubmed.ncbi.nlm.nih.gov/22416577/.

  199. Bakhshi PK, Nangrejo MR, Stride E, Edirisinghe M. Application of electrohydrodynamic technology for folic acid encapsulation. Food Bioprocess Technol. 2013;6:1837–46.

    Article  CAS  Google Scholar 

  200. Halimi SU, Bakar NFA, Ismail SN, Hashib SA, Naim MN. Electrospray deposition of titanium dioxide (TiO 2) nanoparticles. AIP Conf Proc. Am Inst Phys. 2014;57–62.

  201. Lee YH, Wu B, Zhuang WQ, Chen DR, Tang YJ. Nanoparticles facilitate gene delivery to microorganisms via an electrospray process. J Microbiol Methods. 2011;84:228–33. Available from: https://pubmed.ncbi.nlm.nih.gov/21144867/.

  202. Saraf A, Baggett LS, Raphael RM, Kasper FK, Mikos AG. Regulated non-viral gene delivery from coaxial electrospun fiber mesh scaffolds. J Control Release. 2010;143:95–103. Available from: https://pubmed.ncbi.nlm.nih.gov/20006660/.

  203. Ryan CN, Smith KL, Stark JPW. The influence of geometry on the flow rate sensitivity to applied voltage within cone-jet mode electrospray. J Appl Phys. 2012;112:114510.

    Article  Google Scholar 

  204. Moghadam H, Samimi M, Samimi A, Khoram M. Study of parameters affecting size distribution of beads produced from electro-spray of high viscous liquids. 2009.

  205. Haj-Ahmad R, Rasekh M, Nazari K, Li Y, Fu Y, Li B, et al. EHDA Spraying: a multi-material nano-engineering route. Curr Pharm Des. 2015;21:3239–47. Available from: https://pubmed.ncbi.nlm.nih.gov/26027562/.

  206. Li H, Peng Z, Song Y, Dou M, Lu X, Li M, et al. Study of the permeation-promoting effect and mechanism of solid microneedles on different properties of drugs. Drug Deliv. 2023;30:2165737.

    Article  PubMed  PubMed Central  Google Scholar 

  207. Bolton CJW, Howells O, Blayney GJ, Eng PF, Birchall JC, Gualeni B, et al. Hollow silicon microneedle fabrication using advanced plasma etch technologies for applications in transdermal drug delivery. Lab Chip. 2020;20:2788–95. Available from: https://pubmed.ncbi.nlm.nih.gov/32632424/.

  208. Haider I, Pettis RJ, Davison N, Clarke R ZJ. Biomedical and fluid flow characterization of microneedle-based drug delivery devices. 25th Annu Meet Am Soc Biomech San Diego, CA. 2001. Available from: https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Haider+I%2C+Pettis+RJ%2C+Davison+N+et+al.+Biomedical+and+fluid+flow+characterization+of+microneedle-based+drug+delivery+devices.+In%3A+Proceedings+of+the+25th+Annual+Meeting+of+the+American+Society+o.

  209. Abla MJ, Chaturvedula A, O’Mahony C, Banga AK. Transdermal delivery of methotrexate for pediatrics using silicon microneedles. Ther Deliv. 2013;4:543–51. Available from: https://pubmed.ncbi.nlm.nih.gov/23647273/.

  210. Chabri F, Bouris K, Jones T, Barrow D, Hann A, Allender C, et al. Microfabricated silicon microneedles for nonviral cutaneous gene delivery. Br J Dermatol. 2004;150:869–77. Available from: https://pubmed.ncbi.nlm.nih.gov/15149498/.

  211. Chen Z, Ren L, Li J, Yao L, Chen Y, Liu B, et al. Rapid fabrication of microneedles using magnetorheological drawing lithography. Acta Biomater. 2018;65:283–91. Available from: https://pubmed.ncbi.nlm.nih.gov/29107057/.

  212. Aggarwal P, Johnston CR. Geometrical effects in mechanical characterizing of microneedle for biomedical applications. Sensors Actuators B Chem. 2004;102:226–34.

    Article  CAS  Google Scholar 

  213. Zainal Abidin HE, Ooi PC, Tiong TY, Marsi N, Ismardi A, Mohd Noor M, et al. Stress and deformation of optimally shaped silicon microneedles for transdermal drug delivery. J Pharm Sci. 2020;109:2485–92. Available from: https://pubmed.ncbi.nlm.nih.gov/32380181/.

  214. Khanna P, Silva H, Bhansali S. Variation in microneedle geometry to increase shear strength. Procedia Eng. 2010;5:977–80.

    Article  Google Scholar 

  215. O’Mahony C. Structural characterization and in-vivo reliability evaluation of silicon microneedles. Biomed Microdevices. 2014;16:333–43. Available from: https://pubmed.ncbi.nlm.nih.gov/24487507/.

  216. Watanabe T, Hagino K, Sato T. Evaluation of the effect of polymeric microneedle arrays of varying geometries in combination with a high-velocity applicator on skin permeability and irritation. Biomed Microdevices. 2014;16:591–7.

    Article  CAS  PubMed  Google Scholar 

  217. Loizidou EZ, Inoue NT, Ashton-Barnett J, Barrow DA, Allender CJ. Evaluation of geometrical effects of microneedles on skin penetration by CT scan and finite element analysis. Eur J Pharm Biopharm. 2016;107:1–6. Available from: https://pubmed.ncbi.nlm.nih.gov/27373753/.

  218. Donnelly RF, Garland MJ, Morrow DIJ, Migalska K, Singh TRR, Majithiya R, et al. Optical coherence tomography is a valuable tool in the study of the effects of microneedle geometry on skin penetration characteristics and in-skin dissolution. J Control Release. 2010;147:333–41. Available from: https://pubmed.ncbi.nlm.nih.gov/20727929/.

  219. Hiraishi Y, Nakagawa T, Quan YS, Kamiyama F, Hirobe S, Okada N, et al. Performance and characteristics evaluation of a sodium hyaluronate-based microneedle patch for a transcutaneous drug delivery system. Int J Pharm. 2013;441:570–9. Available from: https://pubmed.ncbi.nlm.nih.gov/23137695/.

  220. Shah V, Choudhury BK. Fabrication, physicochemical characterization, and performance evaluation of biodegradable polymeric microneedle patch system for enhanced transcutaneous flux of high molecular weight therapeutics. AAPS PharmSciTech. 2017;18:2936–48. Available from: https://doi.org/10.1208/s12249-017-0774-5.

  221. Cao J, Zhang N, Wang Z, Su J, Yang J, Han J, et al. Microneedle-assisted transdermal delivery of etanercept for rheumatoid arthritis treatment. Pharmaceutics. 2019;11.

  222. Zhang Y, Liu Q, Yu J, Yu S, Wang J, Qiang L, et al. Locally induced adipose tissue browning by microneedle patch for obesity treatment. ACS Nano. 2017;11:9223–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Wang Z, Yang Z, Jiang J, Shi Z, Mao Y, Qin N, et al. Silk microneedle patch capable of on-demand multidrug delivery to the brain for glioblastoma treatment. Adv Mater. 2022;34:e2106606.

    Article  PubMed  Google Scholar 

  224. Park S, Lee K, Kang H, Lee Y, Lee J, Kim JH, et al. Single administration of a biodegradable, separable microneedle can substitute for repeated application of eyedrops in the treatment of infectious keratitis. Adv Healthc Mater. 2021;10:e2002287.

    Article  PubMed  Google Scholar 

  225. Yao S, Chi J, Wang Y, Zhao Y, Luo Y, Wang Y. Zn-MOF encapsulated antibacterial and degradable microneedles array for promoting wound healing. Adv Healthc Mater. 2021;10:e2100056.

    Article  PubMed  Google Scholar 

  226. Yang G, Chen Q, Wen D, Chen Z, Wang J, Chen G, et al. A therapeutic microneedle patch made from hair-derived keratin for promoting hair regrowth. ACS Nano. 2019;13:4354–60.

    Article  CAS  PubMed  Google Scholar 

  227. Shin CI, Jeong SD, Rejinold NS, Kim Y-C. Microneedles for vaccine delivery: challenges and future perspectives. Ther Deliv. 2017;8:447–60.

    Article  CAS  PubMed  Google Scholar 

  228. Miller PR, Taylor RM, Tran BQ, Boyd G, Glaros T, Chavez VH, et al. Extraction and biomolecular analysis of dermal interstitial fluid collected with hollow microneedles. Commun Biol. 2018;1:173.

    Article  PubMed  PubMed Central  Google Scholar 

  229. Lu H, Zada S, Yang L, Dong H. Microneedle-based device for biological analysis. Front Bioeng Biotechnol. 2022;10:851134.

    Article  PubMed  PubMed Central  Google Scholar 

  230. Liu C, Zhao Z, Lv H, Yu J, Zhang P. Microneedles-mediated drug delivery system for the diagnosis and treatment of melanoma. Colloids Surf B Biointerfaces. 2022;219:112818.

    Article  CAS  PubMed  Google Scholar 

  231. Lim EK, Huh YM, Yang J, Lee K, Suh JS, Haam S. pH-triggered drug-releasing magnetic nanoparticles for cancer therapy guided by molecular imaging by MRI. Adv Mater. 2011;23:2436–42. Available from: https://pubmed.ncbi.nlm.nih.gov/21491515/.

  232. Glasgow MDK, Chougule MB. Recent developments in active tumor targeted multifunctional nanoparticles for combination chemotherapy in cancer treatment and imaging. J Biomed Nanotechnol. 2015;11:1859–98. Available from: https://pubmed.ncbi.nlm.nih.gov/26554150/.

  233. Alshammari MK, Albutayh BNA, Alhabib B, Alharbi AS, Almutairi YS, Kamal M, et al. Cancer theranostics employing microneedles: experimental and patented strategies. J Drug Deliv Sci Technol. 2023;83:104402.

    Article  CAS  Google Scholar 

  234. Ruan R, Chen M, Sun S, Wei P, Zou L, Liu J, et al. Topical and targeted delivery of siRNAs to melanoma cells using a fusion peptide carrier. Sci Rep. 2016;6. Available from: https://pubmed.ncbi.nlm.nih.gov/27374619/.

  235. Jerant AF, Johnson JT, Sheridan CD, Caffrey TJ. Early detection and treatment of skin cancer. Am Fam Physician. 2000;62:357–368, 375–376,381–382.

  236. Jemal A, Devesa SS, Hartge P, Tucker MA. Recent trends in cutaneous melanoma incidence among whites in the United States. J Natl Cancer Inst. 2001;93:678–83. Available from: https://pubmed.ncbi.nlm.nih.gov/11333289/.

  237. Song Q, Qi X, Jia H, He L, Kumar S, Pitman JL, et al. Invader assisted enzyme-linked immunosorbent assay for colorimetric detection of disease biomarkers using oligonucleotide probe-modified gold nanoparticles. J Biomed Nanotechnol. 2016;12:831–9. Available from: https://pubmed.ncbi.nlm.nih.gov/27301208/.

  238. Ye Y, Wang J, Hu Q, Hochu GM, Xin H, Wang C, et al. Synergistic Transcutaneous immunotherapy enhances antitumor immune responses through delivery of checkpoint inhibitors. ACS Nano. 2016;10:8956–63. Available from: https://pubmed.ncbi.nlm.nih.gov/27599066/.

  239. Chen W, Wang G, Yung BC, Liu G, Qian Z, Chen X. Long-acting release formulation of exendin-4 based on biomimetic mineralization for type 2 diabetes therapy. ACS Nano. 2017;11:5062–9. Available from: https://pubmed.ncbi.nlm.nih.gov/28437610/.

  240. Alshammari MK, Ghazwani JA, Alsharari FO, Alotaibi SS, Alotaibi RM, Alsayahani AA, et al. An update on microneedle in insulin delivery: quality attributes, clinical status and challenges for clinical translation. J Drug Deliv Sci Technol. 2022;103668.

  241. Ullah A, Choi HJ, Jang M, An S, Kim GM. Smart microneedles with porous polymer layer for glucose-responsive insulin delivery. Pharmaceutics. 2020;12.

  242. Fonseca DFS, Costa PC, Almeida IF, Dias-Pereira P, Correia-Sá I, Bastos V, et al. Pullulan microneedle patches for the efficient transdermal administration of insulin envisioning diabetes treatment. Carbohydr Polym. 2020;241:116314.

    Article  CAS  PubMed  Google Scholar 

  243. Liu H, Zhang S, Zhou Z, Xing M, Gao Y. Two-layer sustained-release microneedles encapsulating exenatide for type 2 diabetes treatment. Pharmaceutics. 2022;14.

  244. Matoori S, Veves A, Mooney DJ. Advanced bandages for diabetic wound healing. Sci Transl Med. 2021;13. Available from: https://pubmed.ncbi.nlm.nih.gov/33731435/.

  245. Guan G, Zhang Q, Jiang Z, Liu J, Wan J, Jin P, et al. Multifunctional silk fibroin methacryloyl microneedle for diabetic wound healing. Small. 2022;18. Available from: https://pubmed.ncbi.nlm.nih.gov/36333115/.

  246. Xue Y, Chen C, Tan R, Zhang J, Fang Q, Jin R, et al. Artificial intelligence-assisted bioinformatics, microneedle, and diabetic wound healing: a “new deal” of an old drug. ACS Appl Mater Interfaces. 2022;14:37396–409.

    Article  CAS  PubMed  Google Scholar 

  247. Guo Z, Liu H, Shi Z, Lin L, Li Y, Wang M, et al. Responsive hydrogel-based microneedle dressing for diabetic wound healing. J Mater Chem B. 2022;10:3501–11.

    Article  CAS  PubMed  Google Scholar 

  248. Zhou Z, Lin H, Li C, Wu Z. Recent progress of fully synthetic carbohydrate-based vaccine using TLR agonist as build-in adjuvant. Chinese Chem Lett. 2018;29:19–26.

    Article  CAS  Google Scholar 

  249. Moffatt K, Wang Y, Singh TRR, Donnelly RF. Microneedles for enhanced transdermal and intraocular drug delivery. Curr Opin Pharmacol. 2017;36:14–21.

    Article  CAS  PubMed  Google Scholar 

  250. Ding Z, Verbaan FJ, Bivas-Benita M, Bungener L, Huckriede A, van den Berg DJ, et al. Microneedle arrays for the transcutaneous immunization of diphtheria and influenza in BALB/c mice. J Control release Off J Control Release Soc. 2009;136:71–8.

    Article  CAS  Google Scholar 

  251. Du G, Hathout RM, Nasr M, Nejadnik MR, Tu J, Koning RI, et al. Intradermal vaccination with hollow microneedles: a comparative study of various protein antigen and adjuvant encapsulated nanoparticles. J Control release Off J Control Release Soc. 2017;266:109–18.

    Article  CAS  Google Scholar 

  252. Chang H, Zheng M, Yu X, Than A, Seeni RZ, Kang R, et al. A swellable microneedle patch to rapidly extract skin interstitial fluid for timely metabolic analysis. Adv Mater. 2017;29.

  253. Wang PM, Cornwell M, Prausnitz MR. Minimally invasive extraction of dermal interstitial fluid for glucose monitoring using microneedles. Diabetes Technol Ther. 2005;7:131–41.

    Article  CAS  PubMed  Google Scholar 

  254. Amaral J, Pinto V, Costa T, Gaspar J, Ferreira R, Paz E, et al. Integration of TMR sensors in silicon microneedles for magnetic measurements of neurons. IEEE Trans Magn. 2013;49:3512–5.

    Article  CAS  Google Scholar 

  255. Mandal A, Boopathy A V, Lam LKW, Moynihan KD, Welch ME, Bennett NR, et al. Cell and fluid sampling microneedle patches for monitoring skin-resident immunity. Sci Transl Med. 2018;10.

  256. Ranamukhaarachchi SA, Padeste C, Häfeli UO, Stoeber B, Cadarso VJ. Design considerations of a hollow microneedle-optofluidic biosensing platform incorporating enzyme-linked assays. J Micromechanics Microengineering. 2017;28:24002.

    Article  Google Scholar 

  257. Fabbrocini G, De Vita V, Monfrecola A, De Padova MP, Brazzini B, Teixeira F, et al. Percutaneous collagen induction: an effective and safe treatment for post-acne scarring in different skin phototypes. J Dermatolog Treat. 2014;25:147–52.

    Article  CAS  PubMed  Google Scholar 

  258. Kim M, Yang H, Kim H, Jung H, Jung H. Novel cosmetic patches for wrinkle improvement: retinyl retinoate- and ascorbic acid-loaded dissolving microneedles. Int J Cosmet Sci. 2014;36:207–12.

    Article  CAS  PubMed  Google Scholar 

  259. Prausnitz MR. Engineering microneedle patches for vaccination and drug delivery to skin. Annu Rev Chem Biomol Eng. 2017;8:177–200.

    Article  CAS  PubMed  Google Scholar 

  260. Park KY, Kwon HJ, Lee C, Kim D, Yoon JJ, Kim MN, et al. Efficacy and safety of a new microneedle patch for skin brightening: a randomized, split-face, single-blind study. J Cosmet Dermatol. 2017;16:382–7.

    Article  PubMed  Google Scholar 

  261. Park J-H, Choi S-O, Seo S, Choy Y Bin, Prausnitz MR. A microneedle roller for transdermal drug delivery. Eur J Pharm Biopharm Off J Arbeitsgemeinschaft fur Pharm Verfahrenstechnik eV. 2010;76:282–9.

  262. Cooles FAH, Isaacs JD. Pathophysiology of rheumatoid arthritis. Curr Opin Rheumatol. 2011;23:233–40.

    Article  CAS  PubMed  Google Scholar 

  263. Toth PE, Urtis J. Commonly used muscle relaxant therapies for acute low back pain: a review of carisoprodol, cyclobenzaprine hydrochloride, and metaxalone. Clin Ther. 2004;26:1355–67. Available from: https://pubmed.ncbi.nlm.nih.gov/15530999/.

  264. U.S. National Library of medicine. Clinical triaals.gov. 2023. Available from: https://clinicaltrials.gov/ct2/results?cond=microneedles&term=&cntry=&state=&city=&dist=.

Download references

Acknowledgements

The authors are thankful to Lovely Professional University, Punjab, India.

Author information

Authors and Affiliations

Authors

Contributions

MRB: concept building, writing original draft, and review and editing. SV: concept building and pictorial representations. RK: review and editing. VH: writing original draft and review and editing. ABS: Writing original draft, review and editing. JD: writing original draft and review and editing. PK: writing original draft and review and editing. VP: concept building and review and editing. GG: Writing original draft and review and editing. RL: writing original draft and review and editing. MFA: review and editing. AP: writing original draft and review and editing. SP: writing original draft and review and editing. KD: concept building and review and editing. SKS: concept building, writing original draft, supervision, review and editing, and total administration of project.

Corresponding author

Correspondence to Sachin Kumar Singh.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 32 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babu, M.R., Vishwas, S., Khursheed, R. et al. Unravelling the role of microneedles in drug delivery: Principle, perspectives, and practices. Drug Deliv. and Transl. Res. 14, 1393–1431 (2024). https://doi.org/10.1007/s13346-023-01475-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-023-01475-9

Keywords

Navigation