Skip to main content

Advertisement

Log in

Nanotechnological interventions for treatment of trypanosomiasis in humans and animals

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Trypanosomiasis is a parasitic infection caused by Trypanosoma. It is one of the major causes of deaths in underprivileged, rural areas of Africa, America and Asia. Depending on the parasite species responsible for the disease, it can take two forms namely African trypanosomiasis (sleeping sickness) and American trypanosomiasis (Chagas disease). The complete life-cycle stages of trypanosomes span between insect vector (tsetse fly, triatomine bug) and mammalian host (humans, animals). Only few drugs have been approved for the treatment of trypanosomiasis. Moreover, current trypanocidal therapy has major limitations of poor efficacy, serious side effects and drug resistance. Due to the lack of economic gains from tropical parasitic infection, it has always been neglected by the researchers and drug manufacturers. There is an immense need of more effective innovative strategies to decrease the deaths associated with this diseases. Nanotechnological approaches for delivery of existing drugs have shown significant improvement in efficacy with many-fold decrease in their dose. The review emphasizes on nanotechnological interventions in the treatment of trypanosomiasis in both humans and animals. Current trypanocidal therapy and their limitations have also been discussed briefly.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. WHO Report on trypansomiasis 2013. Control and surveillance of human African trypanosomiasis 2001.

  2. WHO Trypansomiasis. WHO-Trypansomiasis, International travel & health issue [Internet]. [cited 2019 Jul 10]. Available from: https://www.who.int/ith/diseases/trypanosomiasis/en/

  3. WHO. WHO_Trypanosomiasis_Countries at risk [Internet]. [cited 2019 Jul 11]. Available from: https://www.who.int/trypanosomiasis_african/country/risk_AFRO/en/

  4. WHO- Chagas Disease. WHO_Chagas disease_Epidemology [Internet]. [cited 2019 Jul 11]. Available from: https://www.who.int/chagas/epidemiology/en/

  5. Pathak KML, Arora JK, Kapoor M. Short communication camel trypanosomosis in Rajasthan. India Vertirnary Parasitol. 1993;49:319–23.

    CAS  Google Scholar 

  6. Chandrasekar PH. African trypanosomiasis. Medscape Rev. 2018. p. 1–14.

  7. Babokhov P, Sanyaolu AO, Oyibo WA, Fagbenro-beyioku AF, Iriemenam NC. A current analysis of chemotherapy strategies for the treatment of human African trypanosomiasis. Pathog Glob Health. 2013;107:242–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Barrett MP, Boykin DW, Brun R, Tidwell RR. Review: Frontiers in Pharmacology. Human African trypanosomiasis : pharmacological re-engagement with a neglected disease. Br J Pharmacol. 2005;2007:1155–71.

    Google Scholar 

  9. Gutteridge WE. Existing chemotherapy and its limitations. Br Med Bull. 1985;41:162–8.

    CAS  PubMed  Google Scholar 

  10. Fairlamb AH. Chemotherapy of human African trypanosomiasis : current and future prospects. Trends Parasitol. 2003;19:488–94.

    CAS  PubMed  Google Scholar 

  11. Baker N, De Koning HP, Ma P, Horn D. Drug resistance in African trypanosomiasis : the melarsoprol and pentamidine story. Trends Parasitol. 2013;29:110–8.

    CAS  PubMed  Google Scholar 

  12. Brun R, Blum J, Chappuis F, Burri C. Human African trypanosomiasis. Lancet. 2010;375:148–59.

    PubMed  Google Scholar 

  13. Giordani F, Morrison LJ, Rowan TIMG, Koning HPDE, Barrett MP. The animal trypanosomiases and their chemotherapy : a review. Parasitology. 2017:1862–89.

  14. Pink R, Hudson A, Mouriès M, Bendig M. Opprtunities and challenges in anti-parasitic drug discovery. Natl Rev. 2005;4:727–40.

    CAS  Google Scholar 

  15. Thomas JA, Baker N, Hutchinson S, Id CD, Trenaman A, Id LG, et al. Insights into antitrypanosomal drug mode-of- action from cytology-based profiling. PLoS Negl Trop Dis. 2018:1–19.

  16. Yun O, Priotto G, Tong J, Flevaud L. NECT is next : implementing the new drug combination therapy for Trypanosoma brucei gambiense sleeping sickness. PLoS Negl Trop Dis. 2010;4:1–5.

    Google Scholar 

  17. Samo M, Jannin JG. Monitoring the use of nifurtimox-eflornithine combination therapy ( NECT ) in the treatment of second stage gambiense human African trypanosomiasis. Res Rep Trop Med. 2012;3:93–101.

    PubMed  PubMed Central  Google Scholar 

  18. Road B. The pharmacology of isometamidium. J vet Pharmacol Therp. 1988;11:233–45.

    Google Scholar 

  19. Desquesnes M, Dargantes A, Lai D, Lun Z, Holzmuller P, Jittapalapong S. Trypanosoma evansi and Surra : a review and perspectives on transmission, epidemiology and control, impact, and zoonotic aspects. Biomed Res Int 2013;1–20.

  20. Biobaku BY. Antiprotozoan drugs at a glance [Internet]. Available from: http://unaab.edu.ng/wp-content/uploads/2009/12/484_ANTIPROTPOZOAN AGENTS.pdf.

  21. Barrett MP. Problems for the chemotherapy of human African trypanosomiasis. Curr Opin Infect Dis. 2000;13:647–51.

    CAS  PubMed  Google Scholar 

  22. WHO. Chagas disease (American trypanosomiasis).

  23. Health T center for food security and public. American Trypanosomiasis (Chagas Disease ). 2017.

  24. Romero EL, Morilla MJ. Nanotechnological approaches against Chagas disease. Adv Drug Deliv Rev. 2010;62:576–88.

    CAS  PubMed  Google Scholar 

  25. Urbina JA, Docampo R. Specific chemotherapy of Chagas disease: controversies and advances. Trends Parasitol. 2005;19:495–501.

    Google Scholar 

  26. Kroubi M, Karembe H, Betbeder D. Drug delivery systems in the treatment of African trypanosomiasis infections. Expert Opin Drug Deliv. 2011;8:735–47.

    CAS  PubMed  Google Scholar 

  27. Islan GA, Durán M, Cacicedo ML, Nakazato G, Kobayashi RKT, Martinez DST, et al. Nanopharmaceuticals as a solution to neglected diseases : is it possible ? Acta Trop. 2017;170:16–42.

    CAS  PubMed  Google Scholar 

  28. Romero EL. Nanomedicines against Chagas disease : an update on therapeutics , prophylaxis and diagnosis. Nanomedicine. 2015;10:465–81.

    PubMed  Google Scholar 

  29. Date AA, Joshi MD, Patravale VB. Parasitic diseases : liposomes and polymeric nanoparticles versus lipid nanoparticles. Adv Drug Deliv Rev. 2007;59:505–21.

    CAS  PubMed  Google Scholar 

  30. Lidani KCF, Bavia L, Ambrosio AR, De Messias-reason IJ, Barbosa AS. The complement system : a prey of Trypanosoma cruzi. Front Microbiol. 2017;8:1–14.

    Google Scholar 

  31. Simarro PP. Epidemiology of human African trypanosomiasis. Clin epidemology. 2014:257–75.

  32. Matthews KR. The developmental cell biology of Trypanosoma brucei. J Cell Sci. 2005;118:283–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Smith TK, Bringaud F, Nolan DP, Figueiredo LM. Metabolic reprogramming during the Trypanosoma brucei life cycle. F1000 Res. 2017;6:1–12.

    Google Scholar 

  34. Centers for Disease control and Prevention [Internet]. African Trypanos. [cited 2020 Jan 18]. Available from: https://www.cdc.gov/parasites/sleepingsickness/index.html

  35. Rico E, Rojas F, Mony BM, Szoor B, Macgregor P. Bloodstream form pre-adaptation to the tsetse fly in Trypanosoma brucei. Cell Infect Microbiol. 2013;3:1–15.

    Google Scholar 

  36. Garcia-salcedo JA, Munday JC, Unciti-broceta JD, De Koning HP Progress towards new treatments for human African trypanosomiasis. Trypanos Trypanos. 2014. p. 217–38.

  37. Pinger J, Chowdhury S, Papavasiliou FN. Variant surface glycoprotein density defines an trypanosomes undergoing antigenic variation. Nat Commun. 2017;8:1–9.

    CAS  Google Scholar 

  38. Matsuda NM, Miller ISM, Paulo II, Evora RB. The chronic gastrointestinal manifestations of Chagas disease. Clinics. 2009;64:1219–24.

    PubMed  PubMed Central  Google Scholar 

  39. Rodrigues-dos-Santos Í, Melo MF, de Castro L, Hasslocher-Moreno AM, do Brasil PEAA, de Silvestre Sousa A, et al. Exploring the parasite load and molecular diversity of Trypanosoma cruzi in patients with chronic Chagas disease from different regions of Brazil. PLoS Negl Trop Dis. 2018;12:1–19.

    Google Scholar 

  40. Teixeira ARL, Hecht MM, Guimaro MC, Sousa AO, Nitz N. Pathogenesis of chagas’ disease: parasite persistence and autoimmunity. Clin Microbiol Rev. 2011;24:592–630.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Chagas Disease [Internet]. Centers Dis. Control Prev. [cited 2020 Jan 18]. Available from: https://www.cdc.gov/parasites/chagas/index.html

  42. Nenarokova A, Michels PAM. A paradigm shift : the mitoproteomes of procyclic and bloodstream Trypanosoma brucei are comparably complex. PLoS Pathog. 2017:1–9.

  43. Borst P, Rudenko G, Borst P. Antigenic variation in African trypanosomes published by: American Association for the Advancement of Science Antigenic Variation in African Trypanosomes. Am Assoc Adv Sci. 2016;264:1872–3.

    Google Scholar 

  44. Mugnier MR, Stebbins CE, Papavasiliou FN. Masters of disguise : antigenic variation and the VSG coat in Trypanosoma brucei. PLoS Pathog. 2016:1–6.

  45. Bangs JD. Evolution of antigenic variation in African trypanosomes: variant surface glycoprotein expression, structure, and function. BioEssays. 2018;1800181:1–8.

  46. Simarro PP, Franco J, Diarra A, Postigo JAR, Jannin J. Update on field use of the available drugs for the chemotherapy of human African trypanosomiasis. Parasitology. 2012;139:842–6.

    CAS  PubMed  Google Scholar 

  47. Olbrich C, Gessner A, Schro W, Kayser O, Mu RH. Lipid – drug conjugate nanoparticles of the hydrophilic drug diminazene — cytotoxicity testing and mouse serum adsorption. J Control Release. 2004;96:425–35.

    CAS  PubMed  Google Scholar 

  48. Olliaro P, Lazdins J, Guhl F. Developments in the treatment of leishmaniasis and trypanosomiasis. Expert Opin Emerg Drugs. 2002;7:61–7.

    CAS  PubMed  Google Scholar 

  49. Sahin A, Asencio C, Izotte J, Pillay D, Coustou V, Karembe H, et al. Veterinary Parasitology The susceptibility of Trypanosoma congolense and Trypanosoma brucei to isometamidium chloride and its synthetic impurities. Vet Parasitol. 2014;203:270–5.

    CAS  PubMed  Google Scholar 

  50. Schad GJ, Allanson A, Mackay SP, Cannavan A, Tettey JNA. Development and validation of an improved HPLC method for the control of potentially counterfeit isometamidium products. J Pharm Biomed Anal. 2008;46:45–51.

    CAS  PubMed  Google Scholar 

  51. Baker N, Glover L, Munday JC, Aguinaga D, Barrett MP, De Koning HP, et al. Aquaglyceroporin 2 controls susceptibility to melarsoprol and pentamidine in African trypanosomes. PNAS. 2012;109:1–6.

    Google Scholar 

  52. Croft SL, Barrett MP, Urbina JA. Chemotherapy of trypanosomiases and leishmaniasis. Trends Parasitol. 2005;21:508–12.

    CAS  PubMed  Google Scholar 

  53. Kaiser M, Bray MA, Cal M, Trunz BB, Torreele E, Brun R. Antitrypanosomal activity of fexinidazole, a new oral nitroimidazole drug candidate for treatment of sleeping sickness. Antimicrob Agents Chemother. 2011;55:5602–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Barrett MP. Potential new drugs for human African trypanosomiasis : some progress at last Michael P. Curr Opin Infect Dis. 2010;23:603–308.

    CAS  PubMed  Google Scholar 

  55. Cavalli A, Lizzi F, Bongarzone S, Belluti F, Piazzi L, Maria C, et al. Complementary medicinal chemistry-driven strategies toward new antitrypanosomal and antileishmanial lead drug candidates. Immunol Med Microbiol. 2010;58:51–60.

    CAS  Google Scholar 

  56. Priotto G, Kasparian S, Ngouama D, Ghorashian S, Arnold U, Ghabri S, et al. Nifurtimox-eflornithine combination therapy for second- stage Trypanosoma brucei gambiense sleeping sickness : a randomized clinical trial in Congo. Clin Infect Dis. 2007;45:1435–42.

    CAS  PubMed  Google Scholar 

  57. Aksoy S, Buscher P, Lehane M, Solano P, Van Den Abbeele J. Human African trypanosomiasis control : achievements and challenges. PLoS Negl Trop Dis. 2017:1–6.

  58. Mordt OV. Application to include Nifurtimox-Eflornithine combination as treatment for stage 2 trypanosoma brucei gambiense human African trypanosomiasis. Geneva: Switzerland; 2013. p. 1–98

    Google Scholar 

  59. Bray MA, Pe B. Fexinidazole – a new oral nitroimidazole drug candidate entering clinical development for the treatment of sleeping sickness. PLoS Negl Trop Dis. 2010;4:1–15.

    Google Scholar 

  60. Baker CH, Welburn SC. The long wait for a new drug for human African trypanosomiasis. Trends Parasitol. 2018;34:818–27.

    PubMed  Google Scholar 

  61. Urbina JA. Recent clinical trials for the etiological treatment of chronic Chagas disease : advances , Challenges and Perspectives. J Eukaryot Microbiol. 2015;62:149–56.

    CAS  PubMed  Google Scholar 

  62. Urbina JA, Lira R, Visbal G, De Quı L. In vitro antiproliferative effects and mechanism of action of the new triazole derivative UR-9825 against the protozoan parasite Trypanosoma ( Schizotrypanum ) cruzi. Antimicrob Agents Chemother. 2000;44:2498–502.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Montalvetti A, Bailey BN, Martin MB, Severin GW, Oldfield E, Docampo R. Bisphosphonates are potent inhibitors of Trypanosoma cruzi farnesyl pyrophosphate synthase *. 2001;276:33930–7.

  64. Berens RL, Marr JJ, Steele F, Cruz DA, Donald J. Effect of allopurinol on Trypanosoma cruzi : metabolism and biological activity in intracellular and bloodstream forms. Antimicrob Agents Chemother. 1982;22:657–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Saraiva VB, Gibaldi D, Previato O, Mendonc L, Bozza MT, Freire-de-lima G, et al. Proinflammatory and cytotoxic effects of hexadecylphosphocholine (Miltefosine ) against drug-resistant strains of Trypanosoma cruzi. Antimicrob Agents Chemother. 2002;46:3472–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Shang N, Li Q, Ko T, Chan H, Li J, Zheng Y, et al. Squalene synthase as a target for Chagas disease therapeutics. PLoS Pathog. 2014;10:1–16.

    Google Scholar 

  67. Salas-sarduy E, Urán L, Karpiak JX, Madauss KP, José J. Novel scaffolds for inhibition of Cruzipain identified from high- throughput screening of anti- kinetoplastid chemical boxes. Nature-Scientific Reports. 2017:1–12.

  68. Montalvetti A, Fernandez A, Sanders M, Ghosh S, Van E, Oldfield E, et al. Metaboolism and bioenergetics : farnesyl pyrophosphate synthase is an essential enzyme in Trypanosoma brucei : in-vitro RNA interference and in-vivo inhibition studies farnesyl pyrophosphate synthase. J Biol Chem. 2003;278:17075–83.

    CAS  PubMed  Google Scholar 

  69. Berg M, Van Der Veken P, Goeminne A, Haemers A, Augustyns K. Inhibitors of the purine salvage pathway : a valuable approach for antiprotozoal chemotherapy ? Curr Med Chem. 2010;17:2456–81.

    CAS  PubMed  Google Scholar 

  70. Frearson JA, Brand S, Mcelroy SP, Cleghorn LAT, Smid O, Stojanovski L, et al. N-myristoyltransferase inhibitors as new leads to treat sleeping sickness. Nature. 2010;464:728–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhang RX, Li J, Zhang T, Amini MA, He C, Lu B, et al. Importance of integrating nanotechnology with pharmacology and physiology for innovative drug delivery and therapy – an illustration with firsthand examples. Acta Pharmacol Sin Nature Publishing Group; 2018;1–20.

  72. He C, Hu Y, Yin L, Tang C, Yin C. Biomaterials effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials. 2010;31:3657–66.

    CAS  PubMed  Google Scholar 

  73. Kaul G, Amiji M. Biodistribution and targeting potential of poly ( ethylene glycol ) -modified gelatin nanoparticles in subcutaneous murine tumor model. J Drug Target. 2004;12:585–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Press D. Nanotechnology-based approaches in anticancer research. Int J Nanomedicine. 2012:4391–408.

  75. Luo Y. Effects of core size and PEG coating layer of iron oxide nanoparticles on the distribution and metabolism in mice. Int J Nanomedicine. 2018;13:5719–31.

    PubMed  PubMed Central  Google Scholar 

  76. Jindal AB. Nanocarriers for spleen targeting: anatomo-physiological considerations, formulation strategies and therapeutic potential. Drug Deliv Transl Res. 2016;6:473–85.

    CAS  PubMed  Google Scholar 

  77. Cole AJ, David AE, Wang J, Galbán CJ, Yang VC. Biomaterials magnetic brain tumor targeting and biodistribution of long-circulating PEG-modified, cross-linked starch-coated iron oxide nanoparticles. Biomaterials. 2011;32:6291–6301, Magnetic brain tumor targeting and biodistribution of long-circulating PEG-modified, cross-linked starch-coated iron oxide nanoparticles.

  78. Suk JS, Xu Q, Kim N, Hanes J, En LM. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev. 2016;99:28–51.

    CAS  PubMed  Google Scholar 

  79. Bamrungsap S, Zhao Z, Chen T, Wang L, Li C, Fu. A focus on nanoparticles as a drug delivery system. Nanomedicine. 2012;7:1253–1271.

  80. Maniruzzaman M, Douroumis D, Boateng AD. Recent advances in Novel drug carrier systems. Intech Open; 2012.

  81. Yamashita F, Hashida M. Pharmacokinetic considerations for targeted drug delivery. Adv Drug Deliv Rev. 2013;65:139–47.

    CAS  PubMed  Google Scholar 

  82. Muro S. Challenges in design and characterization of ligand-targeted drug delivery systems. J Control Release. 2012;164:125–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Steverding D. The transferrin receptor of Trypanosoma brucei. Parasitol Int. 2000;48:191–8.

    CAS  PubMed  Google Scholar 

  84. Molina-portela MP, Samanovic M, Raper J. Distinct roles of apolipoprotein components within the trypanosome lytic factor complex revealed in a novel transgenic mouse model. 2008

  85. Bareford LM, Swaan PW. Endocytic mechanisms for targeted drug delivery. Adv Drug Deliv Rev. 2007;59:748–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK. Review on nanoparticles and nanostructured materials : history , sources , toxicity and regulations. Beilstein J Nanotechnol. 2018;9:1050–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Unciti-broceta JD, Arias JL, Maceira J, Soriano M. Specific cell targeting therapy bypasses drug resistance mechanisms in African trypanosomiasis. PLoS Pathog. 2015:1–20.

  88. Conrath K, Vanhollebeke B, Pays E, Baral TN, Magez S, Muyldermans S, et al. Experimental therapy of African trypanosomiasis with a nanobody-conjugated human trypanolytic factor 2006;12:580–4.

  89. Chang J, Jallouli Y, Kroubi M, Yuan X, Feng W, Kang C. Characterization of endocytosis of transferrin-coated PLGA nanoparticles by the blood – brain barrier. Int Jpurnal Pharm. 2009;379:285–92.

    CAS  Google Scholar 

  90. Macgregor P, Gonzalez-Munoz AL, Jobe F, Taylor MC, Rust S, Sandercock AM, et al. A single dose of antibody-drug conjugate cures a stage 1 model of African trypanosomiasis. PLoS Negl Trop Dis. 2019;13:1–20.

    Google Scholar 

  91. Tachibana H, Yoshihara E, Kaneda Y, Nakae T. In vitro lysis of the bloodstream forms of Trypanosoma brucei gambiense by stearylamine-bearing liposomes 1988;32:966–70.

  92. Yoshihara E, Nakac T. Cytolytic activity of liposomes containing stearylamine. Biochim Biophys Acta. 1986;854:93–101.

    CAS  PubMed  Google Scholar 

  93. Antimisiaris SG, Ioannou PV, Loiseau PM. In-vitro antileishmanial and trypanocidal activities of arsonoliposomes and preliminary in-vivo distribution in BALB / c mice. J Pharm Pharmacol. 2003;55:647–52.

    CAS  PubMed  Google Scholar 

  94. Zirar S, Ben AA, Muchow M, Gibaud S. Comparison of nanosuspensions and hydroxypropyl- b -cyclodextrin complex of melarsoprol : Pharmacokinetics and tissue distribution in mice. Eur J Pharm Biopharm. 2008;70:649–56.

    PubMed  Google Scholar 

  95. Arias JL, Unciti-broceta JD, Maceira J, Hernández-quero J, Magez S, Soriano M, et al. Nanobody conjugated PLGA nanoparticles for active targeting of African Trypanosomiasis. J Control Release. Elsevier B.V.; 2015;197:190–8.

  96. Kroubi M, Daulouede S, Karembe H. Development of a nanoparticulate formulation of diminazene to treat African trypanosomiasis. Nanotechnology. 2010;505102:1–8.

    Google Scholar 

  97. Baldissera MD, Grando TH, Souza CF, Cossetin LF, Ana PT, Dalla DF, et al. Experimental parasitology nerolidol nanospheres increases its trypanocidal efficacy against Trypanosoma evansi : new approach against diminazene aceturate resistance and toxicity. Exp Parasitol. 2016;166:144–9.

    CAS  PubMed  Google Scholar 

  98. Manuja A. Quinapyramine sulfate-loaded sodium alginate nanoparticles show enhanced trypanocidal activity. Nanomedicine. 2014;9:1625–34.

    CAS  PubMed  Google Scholar 

  99. Manuja A. Nano-structures & nano-objects chitosan quinapyramine sulfate nanoparticles exhibit increased trypanocidal activity in mice. Nano-Structures & Nano-Objects. 2018;16:193–9.

    CAS  Google Scholar 

  100. Singh S. Synthesis and evaluation of isometamidium-alginate nanoparticles on equine mononuclear and red blood cells. Int J Biol Macromol. 2016;92:788–94.

    CAS  PubMed  Google Scholar 

  101. Gonzalez-martin G, Mkrino I, Rodriguez-cabezas MN. Characterization and trypanocidal activity of nifurtimox-containing and empty nanoparticles of polyethylcyanoacrylates. J Pharm Pharmacol. 1998;50:29–35.

    CAS  PubMed  Google Scholar 

  102. Gonza G. Allopurinol encapsulated in polycyanoacrylate nanoparticles as potential lysosomatropic carrier : preparation and trypanocidal activity. Eur J Pharm Biopharm. 2000;49:137–42.

    Google Scholar 

  103. Molina J, Urbina J, Gref R, Brener Z, Maciel J, Júnior R. Incorporated into ‘ stealth ’ polyethyleneglycol – polylactide nanospheres. J Antimicrob Chemother. 2001;47:101–4.

    CAS  PubMed  Google Scholar 

  104. Tessarolo LD, Róseo R, Pessoa P, De Menezes B, Mello CP, Lima DB, et al. Nanoencapsulation of benznidazole in calcium carbonate increases its selectivity to Trypanosoma cruzi. Parasitology. 2018;145:1191–8.

    CAS  PubMed  Google Scholar 

  105. Scalise ML, Arrúa EC, Rial MS, Esteva MI, Salomon CJ, Fichera LE. Promising efficacy of benznidazole nanoparticles in acute Trypanosoma cruzi murine model : in-vitro and in-vivo studies. Am Soc Trop Med Hyg. 2016;95:388–93.

    CAS  Google Scholar 

  106. Esteva I, Scalise L, Arru EC, Rial MS, Salomon J, Fichera LE. Elucidating the impact of low doses of nano-formulated benznidazole in acute experimental Chagas disease. PLoS Negl Trop Dis. 2017:1–16.

  107. Morilla MJ, Montanari J, Frank F, Malchiodi E, Corral R, Patricia Petray ELR. Etanidazole in pH-sensitive liposomes: design , characterization and in vitro / in vivo anti-Trypanosoma cruzi activity. J Control Release. 2005;103:599–607.

    CAS  PubMed  Google Scholar 

  108. Baldissera MD, Grando TH, De Souza CF, Cossetin LF, Silva APT, Giongo JL, et al. A nanotechnology based new approach for Trypanosoma evansi chemotherapy: in vitro and vivo trypanocidal effect of (-)-α-bisabolol. Exp Parasitol. 2016;170:156–60.

    CAS  PubMed  Google Scholar 

  109. Branquinho RT, Roy J, Farah C, Garcia GM, Aimond F, Le Guennec J, et al. Biodegradable polymeric nanocapsules prevent cardiotoxicity of anti- trypanosomal lychnopholide. Sci Reports-Nature. 2017:1–13.

  110. Gressler LT, Oliveira CB, Coradini K, Rosa LD. Trypanocidal activity of free and nanoencapsulated curcumin on Trypanosoma evansi. Parasitology. 2015;142:439–48.

    CAS  PubMed  Google Scholar 

  111. Souza CF, Baldissera MD, Cossetin LF, Dalla DF, Monteiro SG. Microbial pathogenesis achyrocline satureioides essential oil loaded in nanocapsules ameliorate the antioxidant / oxidant status in heart of rats infected with Trypanosoma evansi. Microb Pathog Elsevier Ltd. 2017;105:30–6.

    CAS  Google Scholar 

  112. Eger I, José M. Endocytosis in Trypanosoma cruzi ( Euglenozoa : Kinetoplastea ) epimastigotes : visualization of ingested transferrin – gold nanoparticle complexes by confocal laser microscopy. J Microbiol Methods. 2012;91:101–5.

    CAS  PubMed  Google Scholar 

  113. Carneiro ZA, Maia PIS, Sesti-costa R, Lopes CD, Pereira TA, Silva S, et al. In vitro and in vivo trypanocidal activity of H 2 bdtc-loaded solid lipid nanoparticles. PLoS Negl Trop Dis. 2014;8:e2847.

    PubMed  PubMed Central  Google Scholar 

  114. Baldissera MD, Da AS, Oliveira CB, Santos RCV, Vaucher RA, Raffin RP, et al. Experimental parasitology trypanocidal action of tea tree oil ( Melaleuca alternifolia ) against Trypanosoma evansi in vitro and in vivo used mice as experimental model. Exp Parasitol. 2014;141:21–7.

    CAS  PubMed  Google Scholar 

  115. Riul B, Campos PM, Baruffi MD, Marchetti JM. Poly-epsilon-caprolactone nanoparticles enhance ursolic acid in vivo efficacy against Trypanosoma cruzi infection. Mater Sci Eng C. 2017;77:1196–203.

    Google Scholar 

  116. Garcia-salcedo JA, Unciti-broceta JD. Could specific cell targeting overcome resistance associated with current treatments for African trypanosomiasis ? Nanomedicine. 2015;10:3515–7.

    CAS  PubMed  Google Scholar 

  117. Conrath K, Vanhollebeke B, Pays E, Baral TN, Magez S, Muyldermans S, et al. Experimental therapy of African trypanosomiasis with a nanobody-conjugated human trypanolytic factor. Nat Med. 2006;12:580–4.

    PubMed  Google Scholar 

  118. Munday JC, Settimo L, Harry P, Koning D. Transport proteins determine drug sensitivity and resistance in a protozoan parasite. Trypanosoma brucei. 2015;6:1–11.

    CAS  Google Scholar 

  119. Munday JC, Eze AA, Baker N, Glover L, Clucas C, Andre DA, et al. Trypanosoma brucei aquaglyceroporin 2 is a high-affinity transporter for pentamidine and melaminophenyl arsenic drugs and the main genetic determinant of resistance to these drugs. J Antimicrob Chemother. 2014;69:651–63.

    CAS  PubMed  Google Scholar 

  120. Molina I, Salvador F, Serre N, Almirante B. Toxic profile of benznidazole in patients with chronic Chagas disease: risk factors and comparison of the product from two 2015;59:6125–31.

  121. Khalil NM, Mattos AC De, Cristina T, Moreira M, Brustolin D, Mainardes RM. Nanotechnological trategies for the treatment of neglected diseases 2013;7316–29.

  122. Morilla MJ, Montanari JA, Prieto MJ, Lopez MO, Petray PB, Romero EL. Intravenous liposomal benznidazole as trypanocidal agent : increasing drug delivery to liver is not enough. Int J Pharm. 2004;278:311–8.

    CAS  PubMed  Google Scholar 

  123. Morilla MJ, Bena P, Lopez MO, Bakas L, Romero EL. Development and in vitro characterisation of a benznidazole liposomal formulation. Int J Pharm. 2002;249:89–99.

    CAS  PubMed  Google Scholar 

Download references

Funding

Authors are thankful to the Department of Biotechnology, Government of India, for providing financial support under the project BT/PR18008/NNT/28/1055/2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil B. Jindal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prayag, K., Surve, D.H., Paul, A.T. et al. Nanotechnological interventions for treatment of trypanosomiasis in humans and animals. Drug Deliv. and Transl. Res. 10, 945–961 (2020). https://doi.org/10.1007/s13346-020-00764-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-020-00764-x

Keywords

Navigation