Skip to main content

Nanomedicines for the Treatment of Trypanosomiasis

  • Chapter
  • First Online:
Nanomedicines for the Prevention and Treatment of Infectious Diseases

Abstract

Trypanosomiasis is a neglected tropical disease that is mainly prevalent in low- and middle-income countries including regions of Africa, Asia, and America. Except for fexinidazole which was discovered in late 2018, no new drug has been discovered in the last 50 years for the treatment of trypanosomiasis. Furthermore, emergence of drug resistance against FDA-approved antitrypanosomal drugs has also significantly affected the therapy. Nanotechnological interventions of the existing drugs have shown significant improvement in the therapeutic potential of FDA-approved drugs in preclinical research. The chapter focuses on the nanomedicines-based treatment of trypanosomiasis. A brief discussion on vaccine delivery against trypanosome has also been included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ADME:

Absorption distribution metabolism excretion

ApoE:

Apolipoprotein E

apoL-1:

Apolipoprotein

CCL5:

CC-chemokine ligand 5

CD8:

Cluster of differentiation 8

CNS:

Central Nervous System

CPP:

Cell-penetrating peptides

DNA:

Deoxyribonucleic acid

FDA:

Food and Drug Administration

GPI:

Glycosylphosphatidylinositol

IC50:

Inhibitory Concentration

IFN:

Interferons

IgG:

Immunoglobulin G

IL:

Interleukin

IM:

Intramuscular

IV:

Intravenous

LDL:

Low-Density Lipoprotein

NECT:

Nifurtimox–eflornithine combination therapy

PEG:

Polyethylene Glycol

PLGA:

Poly(lactic-co-glycolic acid)

RBC:

Red Blood Cells

ROS:

Reactive oxygen species

SC:

Subcutaneous

SLN:

Solid Lipid Nanoparticles

SRA:

Serum Resistance Protein

Tc24:

Trypomastigote excretory-secretory protein

TGO:

Glutamic-oxaloacetic transaminase

TGP:

Glutamic Pyruvic Transaminase

TNF:

Tumor necrosis factor

Tr-apoL-I:

Truncated apoL-I

TSA-1:

Trypomastigote surface trans-sialidase

Vd:

Volume of distribution

VSGs:

Variant Surface Glycoprotein

WHO:

World Health Organization

References

  1. Prayag K, Surve DH, Paul AT, Kumar S, Jindal AB. Nanotechnological interventions for treatment of trypanosomiasis in humans and animals. Drug Deliv Transl Res. 2020;10:945–61.

    Article  PubMed  Google Scholar 

  2. WHO Trypansomiasis. WHO-Trypansomiasis, international travel & health issue [Internet]. [cited 2019 Jul 10]. Available from: https://www.who.int/ith/diseases/trypanosomiasis/en/.

  3. Kirchoff VL. Chagas disease (American trypanosomiasis). Medscape. 2018:1–31. Available from: https://emedicine.medscape.com/article/214581-overview?form=fpf#a4

  4. WHO fact sheet on Chagas disease (American trypanosomiasis). Available from: https://www.who.int/news-room/fact-sheets/detail/chagas-disease-(american-trypanosomiasis)

  5. de Rezende JM, Rassi A. American trypanosomiasis (Chagas disease). Infect Dis Clin. 2012;26:275–91.

    Article  Google Scholar 

  6. Pan America Health Organization W. Guidelines for the diagnosis and treatment of Chagas disease. Washington, D.C.: PAHO; 2019.

    Google Scholar 

  7. WHO-American trypansomiasis. Available from: https://www.who.int/chagas/epidemiology/en/.

  8. Simarro PP, Jannin J, Cattand P. Eliminating human African trypanosomiasis: where do we stand and what comes next? PLoS Med. 2008;5:174–80.

    Article  Google Scholar 

  9. WHO. Trypanosomiasis, human African (sleeping sickness) [Internet]. [cited 2022 Jul 3]. Available from: https://www.who.int/news-room/fact-sheets/detail/trypanosomiasis-human-african-(sleeping-sickness).

  10. Babokhov P, Sanyaolu AO, Oyibo WA, Fagbenro-beyioku AF, Iriemenam NC. A current analysis of chemotherapy strategies for the treatment of human African trypanosomiasis. Pathog Glob Health. 2013;107:242–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. WHO Report on trypansomiasis. Control and surveillance of human African trypanosomiasis 2001. World Health Organization; 2013.

    Google Scholar 

  12. Barrett MP, Croft SL. Management of trypanosomiasis and leishmaniasis. Br Med Bull. 2012;104:175–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chagas Disease [Internet]. Centers Dis. Control Prev [cited 2020 Jan 18]. Available from: https://www.cdc.gov/parasites/chagas/index.html.

  14. Centers for Disease Control and Prevention [Internet]. African trypanos [cited 2020 Jan 18]. Available from: https://www.cdc.gov/parasites/sleepingsickness/index.html.

  15. Landfear SM. Nutrient transport and pathogenesis in selected parasitic protozoa. Eukaryot Cell. 2011;10:483–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nenarokova A, Michels PAM. A paradigm shift: the mitoproteomes of procyclic and bloodstream Trypanosoma brucei are comparably complex. PLoS Pathog. 2017;13:1–9.

    Google Scholar 

  17. Tiengwe C, Bush PJ, Bangs JD. Controlling transferrin receptor trafficking with GPI-valence in bloodstream stage African trypanosomes. PLoS Pathog [Internet]. Public Library of Science. 2017 [cited 2022 Jul 6];13:e1006366. Available from: https://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1006366.

  18. Mugnier MR, Stebbins CE, Papavasiliou FN. Masters of disguise: antigenic variation and the VSG coat in Trypanosoma brucei. PLoS Pathog. 2016;12:1–6.

    Article  Google Scholar 

  19. Glover L, Hutchinson S, Alsford S, Mcculloch R, Field MC, Horn D. Antigenic variation in African trypanosomes: the importance of chromosomal and nuclear context in VSG expression control. Cell Microbiol. 2013;15:1984–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. De Souza W. Basic cell biology of Trypanosoma cruzi. Curr Pharm Des. 2002;8:269–85.

    Article  PubMed  Google Scholar 

  21. De Koning HP. Transporters in African trypanosomes: role in drug action and resistance. Int J Parasitol. 2001;31:512–22.

    Article  PubMed  Google Scholar 

  22. Quemé-Peña M, Ricci M, Juhász T, Horváti K, Bösze S, Biri-Kovács B, et al. Old polyanionic drug suramin suppresses detrimental cytotoxicity of the host defense peptide LL-37. ACS Pharmacol Transl Sci. 2021;4:155–67.

    Article  PubMed  Google Scholar 

  23. Yun O, Priotto G, Tong J, Flevaud L. NECT is next: implementing the new drug combination therapy for Trypanosoma brucei gambiense sleeping sickness. PLoS Negl Trop Dis. 2010;4:1–5.

    Article  Google Scholar 

  24. Samo M, Jannin JG. Monitoring the use of nifurtimox-eflornithine combination therapy (NECT) in the treatment of second stage gambiense human African trypanosomiasis. Res Rep Trop Med. 2012;3:93–101.

    PubMed  PubMed Central  Google Scholar 

  25. Salomon CJ. First century of Chagas’ disease: an overview on novel approaches to nifurtimox and benznidazole delivery systems. J Pharm Sci. 2012;101:888–94.

    Article  CAS  PubMed  Google Scholar 

  26. Rassi A, Marin-Neto JA. Chagas disease. Lancet. Elsevier. 2010;375:1388–402.

    Google Scholar 

  27. Deeks ED. Fexinidazole: first global approval. Drugs Drugs. 2019;79:215–20.

    Article  CAS  PubMed  Google Scholar 

  28. Baker N, De Koning HP, Ma P, Horn D. Drug resistance in African trypanosomiasis: the melarsoprol and pentamidine story. Trends Parasitol. 2013;29:110–8.

    Article  CAS  PubMed  Google Scholar 

  29. Application to include nifurtimox-eflornithin combination as treatment for stage 2 trypanosoma brucei gambiense human african trypanosomiasis (sleeping sickness) on the 4th who model list of essential medicines for children submitted by Drugs for Neglected Diseases initiative (DNDi), Geneva, Switzerland on 29 November, 2012.

    Google Scholar 

  30. Pearce L. Studies on the treatment of human trypanosomiasis with tryparsamide (the sodium salt of N-phenylglycineamide-p-arsonic acid). J Exp Med. The Rockefeller University Press. 1921;34:1.

    Google Scholar 

  31. Road B. The pharmacology of isometamidium. J Vet Pharmacol Therp. 1988;11:233–45.

    Article  Google Scholar 

  32. Yashica Pharmaceuticals Pvt. Ltd. Product information-Quinapyramine chloride/sulphate BP [Internet]. [cited 2020 Nov 29]. Available from: https://www.pharmarawmaterials.com/quinapyramine-chloride-sulphate.html.

  33. Kroubi M, Karembe H, Betbeder D. Drug delivery systems in the treatment of African trypanosomiasis infections. Expert Opin Drug Deliv. 2011;8:735–47.

    Article  CAS  PubMed  Google Scholar 

  34. Rodgers J, Jones A, Gibaud S, Bradley B, McCabe C, Barrett MP, et al. Melarsoprol cyclodextrin inclusion complexes as promising oral candidates for the treatment of human African trypanosomiasis. PLoS Negl Trop Dis. 2011;5:e1308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ernsting MJ, Murakami M, Roy A, Li SD. Factors controlling the pharmacokinetics, biodistribution and intratumoral penetration of nanoparticles. J Control Release. NIH Public Access. 2013;172:782.

    Google Scholar 

  36. Olbrich C, Gessner A, Schro W, Kayser O, Mu RH. Lipid – drug conjugate nanoparticles of the hydrophilic drug diminazene — cytotoxicity testing and mouse serum adsorption. J Control Release. 2004;96:425–35.

    Article  CAS  PubMed  Google Scholar 

  37. Esteva I, Scalise L, Arru EC, Rial MS, Salomon J, Fichera LE. Elucidating the impact of low doses of nano- formulated benznidazole in acute experimental Chagas disease. PLoS Negl Trop Dis. 2017;11:1–16.

    Google Scholar 

  38. Morilla MJ, Montanari JA, Prieto MJ, Lopez MO, Petray PB, Romero EL. Intravenous liposomal benznidazole as trypanocidal agent: increasing drug delivery to liver is not enough. Int J Pharm. 2004;278:311–8.

    Article  CAS  PubMed  Google Scholar 

  39. Scalise ML, Arrúa EC, Rial MS, Esteva MI, Salomon CJ, Fichera LE. Promising efficacy of benznidazole nanoparticles in acute Trypanosoma cruzi murine model: in-vitro and in-vivo studies. Am Soc Trop Med Hyg. 2016;95:388–93.

    Article  CAS  Google Scholar 

  40. Gonzalez-martin G, Mkrino I, Rodriguez-cabezas. Characterization and trypanocidal activity of nifurtimox-containing and empty nanoparticles of polyethylcyanoacrylates. J Pharm Pharmacol. 1998;50:29–35.

    Article  CAS  PubMed  Google Scholar 

  41. Abriata JP, Eloy JO, Riul TB, Campos PM, Baruffi MD, Marchetti JM. Poly-epsilon-caprolactone nanoparticles enhance ursolic acid in vivo efficacy against Trypanosoma cruzi infection. Mater Sci Eng C. Elsevier. 2017;77:1196–203.

    Google Scholar 

  42. Gonza G. Allopurinol encapsulated in polycyanoacrylate nanoparticles as potential lysosomatropic carrier: preparation and trypanocidal activity. Eur J Pharm Biopharm. 2000;49:137–42.

    Article  Google Scholar 

  43. Manuja A, Kumar B, Chopra M, Bajaj A, Kumar R. Cytotoxicity and genotoxicity of a trypanocidal drug quinapyramine sulfate loaded-sodium alginate nanoparticles in mammalian cells. Int J Biol Macromol. Elsevier B.V. 2016;88:146–155.

    Google Scholar 

  44. Manuja A, Kumar S, Dilbaghi N, Bhanjana G, Chopra M, Kaur H, Kumar R, Manuja B, Singh SYS. Quinapyramine sulfate-loaded sodium alginate nanoparticles show enhanced trypanocidal activity. Nanomedicine. 2014;9:1625–34.

    Article  CAS  PubMed  Google Scholar 

  45. Surve DH, Jindal AB. Development of cationic Isometamidium chloride loaded long-acting lipid nanoformulation: optimization, cellular uptake, pharmacokinetics, biodistribution, and immunohistochemical evaluation. Eur J Pharm Sci. Elsevier. 2021;167:106024.

    Google Scholar 

  46. Kroubi M, Daulouede S, Karembe H. Development of a nanoparticulate formulation of diminazene to treat African trypanosomiasis. Nanotechnology. 2010;505102:1–8.

    Google Scholar 

  47. Manuja A, Kumar B, Chopra M, Bajaj A, Kumar R, Dilbaghi N, Kumar S, Singh S, Riyesh T YS. Cytotoxicity and genotoxicity of a trypanocidal drug quinapyramine sulfate loaded-sodium alginate nanoparticles in mammalian cells. Int J Biol Macromol. Elsevier B.V. 2016;88:146–155.

    Google Scholar 

  48. Gilbert IH. Target-based drug discovery for human African trypanosomiasis: selection of molecular target and chemical matter. Parasitology. Cambridge University Press. 2014;141:28.

    Google Scholar 

  49. Navya PN, Daima HK. Rational engineering of physicochemical properties of nanomaterials for biomedical applications with nanotoxicological perspectives. Nano Converg. Springer. 2016;3:1.

    Google Scholar 

  50. Yu Z, Li Q, Wang J, Yu Y, Wang Y, Zhou Q, et al. Reactive oxygen species-related nanoparticle toxicity in the biomedical field. Nanoscale Res Lett. Springer. 2020;15:1–14.

    Google Scholar 

  51. Bhatt R, Goyal A, Kachhwaha S, Kothari SL. Capping of nanoparticles: an alternative approach for reducing nanoparticle toxicity in plants; submitted in Material Science (Cornell University), 22 Nov. 2022

    Google Scholar 

  52. Tewabe A, Abate A, Tamrie M, Seyfu A, Siraj EA. Targeted drug delivery — from magic bullet to nanomedicine: principles, challenges, and future perspectives. J Multidiscip Healthc Dove Press. 2021;14:1711.

    Article  Google Scholar 

  53. Delespaux V, De Koning HP. Drugs and drug resistance in African trypanosomiasis. Drug Resist Updat. 2007;10:30–50.

    Article  CAS  PubMed  Google Scholar 

  54. Garcia-Salcedo JA, Unciti-Broceta JD, Valverde-Pozo J, Soriano M. New approaches to overcome transport related drug resistance in trypanosomatid parasites. Front Pharmacol. Frontiers Media SA. 2016;7:351.

    Google Scholar 

  55. Pinger J, Chowdhury S, Papavasiliou FN. Variant surface glycoprotein density defines an trypanosomes undergoing antigenic variation. Nat Commun. 2017;8:1–9.

    Article  CAS  Google Scholar 

  56. Unciti-broceta JD, Arias JL, Maceira J, Soriano M. Specific cell targeting therapy bypasses drug resistance mechanisms in African trypanosomiasis. PLoS Pathog. 2015;11:1–20.

    Article  CAS  Google Scholar 

  57. Unciti JD, Del T. Novel therapy based on camelid nanobodies. Ther Deliv. 4:1321–36.

    Google Scholar 

  58. Conrath K, Vanhollebeke B, Pays E, Baral TN, Magez S, Muyldermans S, et al. Experimental therapy of African trypanosomiasis with a nanobody-conjugated human trypanolytic factor. Nat Med. 2006;12:580–4.

    Article  PubMed  Google Scholar 

  59. Dewar S, Sienkiewicz N, Ong HB, Wall RJ, Horn D, Fairlamb AH. The role of folate transport in antifolate drug action in Trypanosoma brucei. J Biol Chem. 2016;291:24768–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kariuki CK, Stijlemans B, Magez S. The trypanosomal transferrin receptor of Trypanosoma Brucei—a review. Trop Med Infect Dis. Multidisciplinary Digital Publishing Institute (MDPI). 2019;4:126.

    Google Scholar 

  61. Trevor CE, Gonzalez-Munoz AL, Macleod OJS, Woodcock PG, Rust S, Vaughan TJ, et al. Structure of the trypanosome transferrin receptor reveals mechanisms of ligand recognition and immune evasion. Nat Microbiol. 2019;4:2074–81.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Arrighi RBG, Ebikeme C, Jiang Y, Ranford-Cartwright L, Barrett MP, Langel Ü, et al. Cell-penetrating peptide TP10 shows broad-spectrum activity against both Plasmodium falciparum and Trypanosoma brucei brucei. Antimicrob Agents Chemother. 2008;52:3414–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yoo J-W, Chambers E, Mitragotri S. Factors that control the circulation time of nanoparticles in blood: challenges, solutions and future prospects. Curr Pharm Des. 2010;16:2298–307.

    Article  CAS  PubMed  Google Scholar 

  64. Blanco E, Shen H, Ferrari M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol. NIH Public Access. 2015;33:941.

    Google Scholar 

  65. Gunasekaran T, Haile T, Nigusse T, Dhanaraju MD. Nanotechnology: an effective tool for enhancing bioavailability and bioactivity of phytomedicine. Asian Pac J Trop Biomed. China Humanity Technology Publishing House. 2014;4:S1.

    Google Scholar 

  66. Foroozandeh P, Aziz AA. Insight into cellular uptake and intracellular trafficking of nanoparticles. Nanoscale Res Lett. SpringerOpen. 2018;13:1–12.

    Google Scholar 

  67. Kumari A, Singla R, Guliani A, Yadav SK. Nanoencapsulation for drug delivery. EXCLI J. Leibniz Research Centre for Working Environment and Human Factors. 2014;13:265.

    Google Scholar 

  68. Omarch G, Kippie Y, Mentor S, Ebrahim N, Fisher D, Murilla G, et al. Comparative in vitro transportation of pentamidine across the blood-brain barrier using polycaprolactone nanoparticles and phosphatidylcholine liposomes. Artif Cells Nanomed Biotechnol. 2019;47:1428–36.

    Article  CAS  PubMed  Google Scholar 

  69. Samuelsson E, Shen H, Blanco E, Ferrari M, Wolfram J. Contribution of Kupffer cells to liposome accumulation in the liver. Colloids Surf B Biointerfaces. NIH Public Access. 2017;158:356.

    Google Scholar 

  70. Morilla MJ, Montanari J, Frank F, Malchiodi E, Corral R, Patricia Petray ELR. Etanidazole in pH-sensitive liposomes: design, characterization and in vitro/in vivo anti-Trypanosoma cruzi activity. J Control Release. 2005;103:599–607.

    Article  CAS  PubMed  Google Scholar 

  71. Antimisiaris SG, Ioannou PV, Loiseau PM. In-vitro antileishmanial and trypanocidal activities of arsonoliposomes and preliminary in-vivo distribution in BALB/c mice. J Pharm Pharmacol. 2003;55:647–52.

    Article  CAS  PubMed  Google Scholar 

  72. Melarsoprol toxicity in the treatment of human African trypanosomiasis. Ten cases treated with dimercaprol [Internet]. [cited 2022 Jul 22]. Available from: https://pubmed.ncbi.nlm.nih.gov/3252975/.

  73. MELARSOPROL injectable | MSF Medical Guidelines [Internet]. [cited 2022 Jul 22]. Available from: https://medicalguidelines.msf.org/en/viewport/EssDr/english/melarsoprol-injectable-16682915.html.

  74. Fairlamb AH, Horn D. Melarsoprol resistance in African trypanosomiasis. Trends Parasitol. Elsevier Ltd. 2018;34:481–492.

    Google Scholar 

  75. Zirar Ben S, Astier A, Muchow M, Gibaud S. Comparison of nanosuspensions and hydroxypropyl- b -cyclodextrin complex of melarsoprol: pharmacokinetics and tissue distribution in mice. Eur J Pharm Biopharm. 2008;70:649–56.

    Article  Google Scholar 

  76. Simarro PP, Franco J, Diarra A, Postigo JAR, Jannin J. Update on field use of the available drugs for the chemotherapy of human African trypanosomiasis. Parasitology. 2012;139:842–6.

    Article  CAS  PubMed  Google Scholar 

  77. Arias JL, Unciti-broceta JD, Maceira J, Castillo T, Hernández-quero J, Magez S, et al. Nanobody conjugated PLGA nanoparticles for active targeting of African Trypanosomiasis. J Control Release. 2015;197:190–8.

    Article  CAS  PubMed  Google Scholar 

  78. Tachibana H, Yoshihara E, Kaneda Y, Nakae T. In vitro lysis of the bloodstream forms of Trypanosoma brucei gambiense by stearylamine-bearing liposomes. Antimicrob Agents Chemother. 1988;32:966–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Singh S, Chopra M, Dilbaghi N, Manuja B, Kumar S, Kumar R, Rathore N, Yadav SMA. Synthesis and evaluation of isometamidium-alginate nanoparticles on equine mononuclear and red blood cells. Int J Biol Macromol. Elsevier BV. 2016;92:788–794.

    Google Scholar 

  80. Prayag KS, Paul AT, Ghorui SK, Jindal AB. Preparation and evaluation of quinapyramine sulphate-docusate sodium ionic complex loaded lipidic nanoparticles and its scale up using geometric similarity principle. J Pharm Sci. Elsevier Ltd. 2021;110:2241–2249.

    Google Scholar 

  81. Tessarolo LD, Róseo R, Pessoa P, de Menezes B, Mello CP, Lima DB, et al. Nanoencapsulation of benznidazole in calcium carbonate increases its selectivity to Trypanosoma cruzi. Parasitology. 2018;145:1191–8.

    Article  CAS  PubMed  Google Scholar 

  82. Carneiro ZA, Maia PIS, Sesti-costa R, Lopes CD, Pereira TA, Silva S, et al. In vitro and in vivo trypanocidal activity of H 2 bdtc-loaded solid lipid nanoparticles. PLoS Negl Trop Dis. 2014;8:e2847.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Molina J, Urbina J, Gref R, Brener Z, Maciel J, Júnior R. Cure of experimental Chagas’ disease by the bis-triazole D0870 incorporated into ‘stealth’ polyethyleneglycol – polylactide nanospheres. J Antimicrob Chemother. 2001;47:101–4.

    Article  CAS  PubMed  Google Scholar 

  84. Andrade-Neto VF, Brandão MGL, Stehmann JR, Oliveira LA, Krettli AU. Antimalarial activity of Cinchona-like plants used to treat fever and malaria in Brazil. J Ethnopharmacol [Internet]. 2003 [cited 2022 Jun 30];87:253–6. Available from: https://pubmed.ncbi.nlm.nih.gov/12860318/.

  85. Wu D, Kong Y, Han C, Chen J, Hu L, Jiang H, et al. d-Alanine:d-alanine ligase as a new target for the flavonoids quercetin and apigenin. Int J Antimicrob Agents. Elsevier. 2008;32:421–426.

    Google Scholar 

  86. Del Prado-Audelo ML, Cortés H, Caballero-Florán IH, González-Torres M, Escutia-Guadarrama L, Bernal-Chávez SA, et al. Therapeutic applications of terpenes on inflammatory diseases. Front Pharmacol. Frontiers Media S.A. 2021;12:2114.

    Google Scholar 

  87. Cimmino A, Roscetto E, Masi M, Tuzi A, Radjai I, Gahdab C, et al. Sesquiterpene lactones from Cotula cinerea with antibiotic activity against clinical isolates of Enterococcus faecalis. Antibiotics. 2021;10:819 [Internet]. Multidisciplinary Digital Publishing Institute. Available from: https://www.mdpi.com/2079-6382/10/7/819/htm.

  88. Hoet S, Opperdoes F, Brun R, Quetin-Leclercq J, Opperdoes F. Natural products active against African trypanosomes: a step towards new drugs. Nat Prod Rep. 2004;21:353–64.

    Article  CAS  PubMed  Google Scholar 

  89. Uchiyama N. Antichagasic activities of natural products against Trypanosoma cruzi. J Health Sci. 2009;55:31–9.

    Article  CAS  Google Scholar 

  90. Cretton S, Breant L, Pourrez L, Ambuehl C, Marcourt L, Ebrahimi SN, et al. Antitrypanosomal quinoline alkaloids from the roots of waltheria indica. J Nat Prod. American Chemical Society. 2014;77:2304–2311.

    Google Scholar 

  91. Ngantchou I, Nyasse B, Denier C, Blonski C, Hannaert V, Schneider B. Antitrypanosomal alkaloids from Polyalthia suaveolens (Annonaceae): their effects on three selected glycolytic enzymes of Trypanosoma brucei. Bioorganic Med Chem Lett. 2010;20:3495–8.

    Article  CAS  Google Scholar 

  92. Sanchez LM, Knudsen GM, Helbig C, De Muylder G, Mascuch SM, MacKey ZB, et al. Examination of the mode of action of the almiramide family of natural products against the kinetoplastid parasite Trypanosoma brucei. J Nat Prod. 2013;76:630–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Takeara R, Albuquerque S, Lopes NP, Callegari Lopes JL. Trypanocidal activity of Lychnophora staavioides Mart. (Vernonieae, Asteraceae). Phytomedicine. Urban und Fischer Verlag Jena. 2003;10:490–493.

    Google Scholar 

  94. Martínez-Luis S, Félix Gómez J, Spadafora C, Guzmán HM, Gutiérrez M. Antitrypanosomal alkaloids from the marine bacterium Bacillus pumilus. Molecules [Internet]. 2012;17:11146–55. Available from: www.mdpi.com/journal/moleculesArticle.

    Article  PubMed  Google Scholar 

  95. Inahashi Y, Iwatsuki M, Ishiyama A, Namatame M, Nishihara-Tsukashima A, Matsumoto A, et al. Spoxazomicins A-C, novel antitrypanosomal alkaloids produced by an endophytic actinomycete, Streptosporangium oxazolinicum K07-0460T. J Antibiot (Tokyo). 2011;64:303–7.

    Article  CAS  PubMed  Google Scholar 

  96. Kwofie KD, Tung NH, Suzuki-Ohashi M, Amoa-Bosompem M, Adegle R, Sakyiamah MM, et al. Antitrypanosomal activities and mechanisms of action of novel tetracyclic iridoids from Morinda lucida Benth. Antimicrob Agents Chemother. American Society for Microbiology. 2016;60:3283–3290.

    Google Scholar 

  97. Baldissera MD, Grando TH, De Souza CF, Cossetin LF, Silva APT, Giongo JL, et al. A nanotechnology based new approach for Trypanosoma evansi chemotherapy: in vitro and vivo trypanocidal effect of (-)-α-bisabolol. Exp Parasitol. 2016;170:156–60.

    Article  CAS  PubMed  Google Scholar 

  98. Rani R, Kumar S, Dilbaghi N, Kumar R. Nanotechnology enabled the enhancement of antitrypanosomal activity of piperine against Trypanosoma evansi. Exp Parasitol. Academic Press Inc. 2020;219:108018.

    Google Scholar 

  99. Ibezim A, Debnath B, Ntie-Kang F, Mbah J, et al. Binding of anti-Trypanosoma natural products from African flora against selected drug targets: a docking study. Med Chem Res. 2017;26:562–79.

    Article  CAS  Google Scholar 

  100. Ritter CS, Baldissera MD, Grando TH, Souza CF, Sagrillo MR, da Silva APT, et al. Achyrocline satureioides essential oil-loaded in nanocapsules reduces cytotoxic damage in liver of rats infected by Trypanosoma evansi. Microb Pathog. Academic Press. 2017;103:149–154.

    Google Scholar 

  101. Branquinho RT, Roy J, Farah C, Garcia GM, Aimond F, Le Guennec J, et al. Biodegradable polymeric nanocapsules prevent cardiotoxicity of anti- trypanosomal lychnopholide. Sci Reports-Nature. 2017;7:1–13.

    Google Scholar 

  102. Baldissera MD, Da Silva AS, Oliveira CB, Santos RCV, Vaucher RA, Raffin RP, et al. Trypanocidal action of tea tree oil (Melaleuca alternifolia) against Trypanosoma evansi in vitro and in vivo used mice as experimental model. Exp Parasitol. Academic Press Inc. 2014;141:21–7.

    Google Scholar 

  103. Tabel H, Wei G, Bull HJ. Immunosuppression: cause for failures of vaccines against African trypanosomiases. PLoS Negl Trop Dis. Public Library of Science. 2013;7:e2090.

    Google Scholar 

  104. Stijlemans B, Radwanska M, De Trez C, Magez S. African trypanosomes undermine humoral responses and vaccine development: link with inflammatory responses? Front Immunol. Frontiers Research Foundation. 2017;8:582.

    Google Scholar 

  105. Autheman D, Crosnier C, Clare S, Goulding DA, Brandt C, Harcourt K, et al. An invariant Trypanosoma vivax vaccine antigen induces protective immunity. Nat Publ Group. 2021;595:96–100.

    CAS  Google Scholar 

  106. Bivona AE, Alberti AS, Cerny N, Trinitario SN, Malchiodi EL. Chagas disease vaccine design: the search for an efficient Trypanosoma cruzi immune-mediated control. Biochim Biophys Acta Mol Basis Dis. 2020;1866:165658.

    Article  CAS  PubMed  Google Scholar 

  107. Dumonteil E, Bottazzi ME, Zhan B, Heffernan MJ, Jones K, Valenzuela JG, et al. Accelerating the development of a therapeutic vaccine for human Chagas disease: rationale and prospects. Expert Rev Vaccines. 2014;11:1043–55.

    Article  Google Scholar 

  108. Dumonteil E, Escobedo-Ortegon J, Reyes-Rodriguez N, Arjona-Torres A, Ramirez-Sierra MJ. Immunotherapy of Trypanosoma cruzi infection with DNA vaccines in Mice. Infect Immun. 2004;72:46–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Pati R, Shevtsov M, Sonawane A. Nanoparticle vaccines against infectious diseases. Front Immunol. Frontiers Media SA. 2018;9:2224.

    Google Scholar 

  110. Bhardwaj P, Bhatia E, Sharma S, Ahamad N, Banerjee R. Advancements in prophylactic and therapeutic nanovaccines. Acta Biomater. Elsevier. 2020;108:1.

    Google Scholar 

Download references

Acknowledgments

Authors are thankful to the Department of Biotechnology, Government of India, for providing financial support for the project (BT/PR18008/NNT/28/1055/2016 dated 17.09.2018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil B. Jindal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Prayag, K.S., Jindal, A.B. (2023). Nanomedicines for the Treatment of Trypanosomiasis. In: Patravale, V.B., Date, A.A., Jindal, A.B. (eds) Nanomedicines for the Prevention and Treatment of Infectious Diseases. AAPS Advances in the Pharmaceutical Sciences Series, vol 56. Springer, Cham. https://doi.org/10.1007/978-3-031-39020-3_8

Download citation

Publish with us

Policies and ethics