Skip to main content

Advertisement

Log in

Novel Therapeutic Targets for Human African Trypanosomiasis

  • Neglected Tropical Diseases (A Sanchez, Section Editor)
  • Published:
Current Treatment Options in Infectious Diseases Aims and scope Submit manuscript

Opinion statement

Human African trypanosomiasis (HAT) or sleeping sickness is one of the neglected tropic diseases caused by Trypanosoma brucei and endemic in sub-saharan Africa. HAT affects half a million people every year in Africa and is fatal, if untreated. Although the number of cases have dropped in recent years, but still there is a strong need to identify and validate new therapeutic targets for trypanosomiasis. Treatment of HAT poses several challenges due to the availability of few drugs and their associated risks like limited efficacy, toxicity, lack of selectivity, stage specificity, and drug resistance. Overcoming these key issues can be explored by identification of some novel targets. Recently, various trypanosomatid biochemical pathways and enzymes have been identified as novel targets for anti-parasitic drug development. New approaches like proteomics and high-throughput phenotypic screening have bridged the gap between the development of new anti-HAT drugs and challenges associated with their development. The present review focuses on novel targets for HAT that hold great promise for elucidating new mechanisms for anti-parasitic action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Simarro PP, Cecchi G, Franco JR, Paone M, Diarra A, Ruiz-Postigo JA, et al. Estimating and mapping the population at risk of sleeping sickness. PLoS Negl Trop Dis. 2012;6(10):e1859. doi:10.1371/journal.pntd.0001859.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Control and surveillance of human African trypanosomiasis. WHO Technical Report Series 984, 2013;1–237. http://www.who.int/iris/handle/10665/95732.

  3. Franco JR, Simarro PP, Diarra A, Jannin JG. Epidemiology of human African trypanosomiasis. Clin Epidemiol. 2014;6:257–75. doi:10.2147/CLEP.S39728.

    PubMed  PubMed Central  Google Scholar 

  4. Barrett MP, Burchmore RJS, Stich A, Lazzari JO, Frasch AC, Cazzulo JJ, Krishna S. The trypanosomiases. Lancet. 2003;362:1469–80. doi:10.2147/CLEP.S39728.

    Article  PubMed  Google Scholar 

  5. Sternberg JM. Human African trypanosomiasis: clinical presentation and immune response. Parasite Immunol. 2004;26:469–76. doi:10.1111/j.0141-9838.2004.00731.x.

    Article  CAS  PubMed  Google Scholar 

  6. Kennedy PG. Human African trypanosomiasis of the CNS: current issues and challenges. J Clin Invest. 2004;113:496–504. doi:10.1172/JCI200421052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Burri C. Chemotherapy against human African trypanosomiasis: is there a road to success? Parasitology. 2010;137:1987–94. doi:10.1017/S0031182010001137.

    Article  CAS  PubMed  Google Scholar 

  8. • Horn D, Duraisingh MT. Antiparasitic chemotherapy: from genomes to mechanisms. Annu Rev Pharmacol Toxicol. 2014;54:5.1–5.24. doi:10.1146/annurev-pharmtox-011613-135915. Highlights the existing drugs and approaches that influence development of new drugs for malaria and African trypanosomiasis

    Article  Google Scholar 

  9. Kuepfer I, Schmid C, Allan M, Edielu A, Haary EP, et al. Safety and efficacy of the 10-day melarsoprol schedule for the treatment of second stage rhodesiense sleeping sickness. PLoS Negl Trop Dis. 2012;6:e1695. doi:10.1371/journal.pntd.0001695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Iten M, Mett H, Evans A, Enyaru JC, Brun R, Kaminsky R. Alterations in ornithine decarboxylase characteristics account for tolerance of Trypanosoma brucei rhodesiense to D,L-α-difluoromethylornithine. Antimicrob Agents Chemother. 1997;41:1922–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Simarro PP, Franco J, Diarra A, Postigo JA, Jannin J. Update on field use of the available drugs for the chemotherapy of human African trypanosomiasis. Parasitology. 2012;139:842–6. doi:10.1017/S0031182012000169.

    Article  CAS  PubMed  Google Scholar 

  12. Priotto G, Kasparian S, Mutombo W, Ngouama D, Ghorashian S, Arnold U, et al. Nifurtimox–eflornithine combination therapy for second-stage African Trypanosoma brucei gambiense trypanosomiasis: a multicentre, randomised, phase III, non-inferiority trial. Lancet. 2009;374:56–64. doi:10.1016/S0140-6736(09)61117-X.

    Article  CAS  PubMed  Google Scholar 

  13. Chappuis F, Udayraj N, Stietenroth K, Meussen A, Bovier PA. Eflornithine is safer than melarsoprol for the treatment of second-stage Trypanosoma brucei gambiense human African trypanosomiasis. Clinical Infectious Diseases: an official publication of the Infectious Diseases Society of America. 2005;41:748–51. doi:10.1086/432576.

    Article  CAS  Google Scholar 

  14. Tagoe DNA, Kalejaiye TD, de Koning HP. The ever unfolding story of cAMP signaling in trypanosomatids: vive la difference! Front Pharmacol. 2015;6:185. doi:10.3389/fphar.2015.00185.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Garbers DL, Chrisman TD, Wiegn P, Katafuchi T, Albanesi JP, Bielinski V, et al. Membrane guanylyl cyclase receptors: an update. Trends EndocrinolMetab. 2006;17:251–8. doi:10.1016/j.tem.2006.06.006.

    Article  CAS  Google Scholar 

  16. Salmon D, Bachmaier S, Krumbholz C, Kador M, Gossmann JA, Uzureau P, et al. Cytokinesis of Trypanosoma brucei bloodstream forms depends on expression of adenylyl cyclases of the ESAG4 or ESAG4-like subfamily. Mol Microbiol. 2012;84:225–42. doi:10.1111/j.1365-2958.2012.08013.x.

    Article  CAS  PubMed  Google Scholar 

  17. Huang H. Signal transduction in Trypanosoma cruzi. Adv Parasitol. 2011;75:325–44. doi:10.1016/B978-0-12-385863-4.00015-0.

    Article  PubMed  Google Scholar 

  18. Shalaby T, Liniger M, Seebeck T. The regulatory subunit of a cGMP-regulated protein kinase A of Trypanosoma brucei. Eur J Biochem. 2001;268:6197–206. doi:10.1046/j.0014-2956.2001.02564.x.

    Article  CAS  PubMed  Google Scholar 

  19. Yamaoka M, Ando T, Terabayashi T, Okamoto M, Takei M, Nishioka T, Kaibuchi K, Matsunaga K, Ishizaki R, Izumi T, et al. PI3K regulates endocytosis after insulin secretion via signaling crosstalk between Arf6 and Rab27a. J Cell Sci. 2015;129:637–49. doi:10.1242/jcs.180141.

    Article  PubMed  Google Scholar 

  20. Seeds AM, Tsui MM, Sunu C, Spana EP, York JD. Inositol phosphate kinase 2 is required for imaginal disc development in Drosophila. Proc Natl Acad Sci. 2015;112:15660–5. doi:10.1073/pnas.1514684112.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Steger DJ, Haswell ES, Miller AL, Wente SR, O’Shea EK. Regulation of chromatin remodeling by inositol polyphosphates. Science. 2003;299:114–6. doi:10.1126/science.1078062.

    Article  CAS  PubMed  Google Scholar 

  22. Wickramasinghe VO, Savill JM, Chavali S, Jonsdottir AB, Rajendra E, Gruner T, Laskey RA, Babu MM, Venkitaraman AR. Human inositol polyphosphate multikinase regulates transcript-selective nuclear mRNA export to preserve genome integrity. Mol Cell. 2013;51:737–50. doi:10.1016/j.molcel.2013.08.031.

    Article  CAS  PubMed  Google Scholar 

  23. Chavez M, Ena S, Van Sande J, de Kerchove d’Exaerde A, Schurmans S, Schiffmann SN. Modulation of ciliary phosphoinositide content regulates trafficking and sonic hedgehog signaling output. Dev Cell. 2015;34:338–50. doi:10.1016/j.devcel.2015.06.016.

    Article  CAS  PubMed  Google Scholar 

  24. Cestari I, Stuart K. Inositol phosphate pathway controls transcription of telomeric expression sites in trypanosomes. Proc Natl Acad Sci. 2015;112:E2803–12. doi:10.1073/pnas.1501206112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cestari I, Haas P, Moretti NS, Schenkman S, Stuart K. Chemogenetic characterization of inositol phosphate metabolic pathway reveals druggable enzymes for targeting kinetoplastid parasites. Cell Chemical Biology. 2016;23:1–10. doi:10.1016/j.chembiol.2016.03.015.

    Article  Google Scholar 

  26. Andrews KT, Haque A, Jones MK. HDAC inhibitors in parasitic diseases. Immunol Cell Biol. 2012;90:66e77. doi:10.1038/icb.2011.97.

    Article  Google Scholar 

  27. Khan O, La Thangue NB. HDAC inhibitors in cancer biology: emerging mechanisms and clinical applications. Immunol Cell Biol. 2012;90:85e94. doi:10.1038/icb.2011.100.

    Article  Google Scholar 

  28. Engel JA, Jones AJ, Avery VM, Sumanadasa SDM, Ng SS, Fairlie DP, et al. Profiling the anti-protozoal activity of anti-cancer HDAC inhibitors against Plasmodium and Trypanosoma parasites. Int J Parasitology: Drugs and Drug Resistance. 2015;5:117–26. doi:10.1016/j.ijpddr.2015.05.004.

    Google Scholar 

  29. Zhao C, Ma S. Recent advances in the discovery of N-myristoyltransferase inhibitors. Chem Med Chem Minirev. 2014;9(11):2425–37. doi:10.1002/cmdc.201402174.

    Article  CAS  Google Scholar 

  30. Frearson JA, Brand S, McElory SP, Cleghorn LAT, Smid O, Stojanovski L, et al. N-myristoyltransferase inhibitors as new leads to treat sleeping sickness. Nature. 2010;464:728–34. doi:10.1038/nature08893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Spinks D, Smith V, Thompson S, Robinson DA, Luksch T, Smith A, et al. Development of small-molecule Trypanosoma brucei N-myristoyltransferase inhibitors: discovery and optimisation of a novel binding mode. Chem Med Chem. 2015;10:1821–36. doi:10.1002/cmdc.201500301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pizarro JC, Hills T, Senisterra G, Wernimont AK, Mackenzie C, et al. Exploring the Trypanosoma brucei Hsp83 potential as a target for structure guided drug design. PLoS Negl Trop Dis. 2013;7(10):e2492. doi:10.1371/journal.pntd.0002492.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Abdeen S, Salim N, Mammadova N, Summers CM, Goldsmith-Pestana K, McMahon-Pratt D, Schultz PG, Horwich AL, Chapman E, Johnson SM. Targeting the HSP60/10 chaperonin systems of Trypanosoma brucei as a strategy for treating African sleeping sickness. Bioorg Med Chem Lett. 2016; doi:10.1016/j.bmcl.2016.09.051.

    Google Scholar 

  34. Manta B, Comini M, Medeiros A, Hugo M, Trujillo M, Radi R. Trypanothione: a unique bis-glutathionyl derivative in trypanosomatids. Biochim Biophys Acta. 2013;1830:3199–216. doi:10.1016/j.bbagen.2013.01.013.

    Article  CAS  PubMed  Google Scholar 

  35. Krauth-Siegel RL, Leroux AE. Low-molecular-mass antioxidants in parasites. Antioxid Redox Signal. 2012;17(4):583–607. doi:10.1089/ars.2011.4392.

    Article  CAS  PubMed  Google Scholar 

  36. Zimmermann S, Oufir M, Leroux A, Krauth-Siegel RL, Becker K, Kaiser M, et al. Cynaropicrin targets the trypanothione redox system in Trypanosoma brucei. Bioorg Med Chem. 2017;21(22):7202–9. doi:10.1016/j.bmc.2013.08.052.

    Article  Google Scholar 

  37. Mackey ZB, Koupparis K, Nishino M, McKerrow JH. High-throughput analysis of an RNAi library identifies novel kinase targets in Trypanosoma brucei. Chem Biol Drug Des. 2011;78:454–63. doi:10.1111/j.1747-0285.2011.01156.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mercer L, Bowling T, Perales J, Freeman J, Nguyen T, et al. 2,4-Diaminopyrimidines as potent inhibitors of Trypanosoma brucei and identification of molecular targets by a chemical proteomics approach. PLoS Negl Trop Dis. 2011;5(2):e956. doi:10.1371/journal.pntd.0000956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tu X, Wang CC. The involvement of two cdc2-related kinases (CRKs) in Trypanosoma brucei cell cycle regulation and the distinctive stage-specific phenotypes caused by CRK3 depletion. J Biol Chem. 2004;279(19):20519–28. doi:10.1074/jbc.M312862200.

    Article  CAS  PubMed  Google Scholar 

  40. Valenciano AL, Ramsey AC, Santos WL, Mackey ZB. Discovery and antiparasitic activity of AZ960 as a Trypanosoma brucei ERK8 inhibitor. Bioorg and Med Chem. 2016; doi:10.1016/j.bmc.2016.07.069.

    Google Scholar 

  41. Katiyar S, Kufareva I, Behera R, Thomas SM, Ogata Y, et al. Lapatinib-binding protein kinases in the African trypanosome: identification of cellular targets for kinase-directed chemical scaffolds. PLoS One. 2013;8(2):e56150. doi:10.1371/journal.pone.0056150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Berriman M, Ghedin E, Hertz-Fowler C, Blandin G, Renauld H, et al. The genome of the African trypanosome Trypanosoma brucei. Science. 2005;309:416–22. doi:10.1126/science.1112642.

    Article  CAS  PubMed  Google Scholar 

  43. Albert MA, Haanstra JR, Hannaert V, Van Roy J, Opperdoes FR, Bakker BM, Michels PA. Experimental and in silico analyses of glycolytic flux control in bloodstream form Trypanosoma brucei. J Biol Chem. 2005;280(31):28306–15. doi:10.1074/jbc.M502403200.

    Article  CAS  PubMed  Google Scholar 

  44. Brimacombe KR, Walsh MJ, Liu L, Vásquez-Valdivieso MG, Morgan HP, McNae I, et al. Identification of ML251, a potent inhibitor of T. brucei and T. cruzi phosphofructokinase. Med Chem Lett. 2014;5:12–7. doi:10.1021/ml400259d.

    Article  CAS  Google Scholar 

  45. Cross GAM, Kim H-S, Wickstead B. Capturing the variant surface glycoprotein repertoire (the VSGnome) of Trypanosoma brucei Lister 427. Mol Biochem Parasitol. 2014;195:59–73. doi:10.1016/ j.molbiopara.2014.06.004.

    Article  CAS  PubMed  Google Scholar 

  46. • Schulz D, Mugnier MR, Paulsen E-M, Kim H-S, Chung C-wW, Tough DF, et al. Bromodomain proteins contribute to maintenance of bloodstream form stage identity in the African trypanosome. PLoS Biol. 2015;13(12):e1002316. doi:10.1371/journal.pbio.1002316. Describes the role of bromodomain proteins in maintaining the identity of parasite in its bloodstream form.

    Article  PubMed  PubMed Central  Google Scholar 

  47. • Ettari R, Tamborini L, Angelo IC, Micale N, Pinto A, De Micheli C, et al. Inhibition of rhodesain as a novel therapeutic modality for human African trypanosomiasis. J Med Chem. 2013;56(14):5637–58. doi:10.1021/jm301424d. Reveals rhodesain as novel therapeutic target for HAT and describes different classes of rhodesain inhibitors.

    Article  CAS  PubMed  Google Scholar 

  48. Scory S, Caffrey CR, Stierhof Y-D, Ruppel A, Steverding D. Trypanosoma brucei: killing of bloodstream forms in vitro and in vivo by the cysteine proteinase inhibitor Z-Phe-Ala-CHN2. Exp Parasitol. 1999;91:327–33. doi:10.1186/1475-9292-6-2.

    Article  CAS  PubMed  Google Scholar 

  49. Willert EK, Phillips MA. Regulated expression of an essential allosteric activator of polyamine biosynthesis in African trypanosomes. PLoS Pathog. 2008;4:e1000183. doi:10.1371/journal.ppat.1000183.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Chang KP, Steiger RF, Dave C, Cheng YC. Effects of methylglyoxal bis (ganylhydrazone) on trypanosomatid flagellates: inhibition of growth and nucleoside incorporation in Trypanosoma brucei. J Protozool. 1978;25:145–9.

    Article  CAS  PubMed  Google Scholar 

  51. Bacchi CJ, Brun R, Croft SL, Alicea K, Buhler Y. In vivo trypanocidal activities of new S-adenosylmethionine decarboxylase inhibitors. Antimicrob Agents Chemother. 1996;40:1448–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Barker RH, Liu JR, Hirth B, Celatka CA, Fitzpatrick R, Xiang Y. Novel S-adenosylmethionine decarboxylase inhibitors for the treatment of human african trypanosomiasis. Antimicrob Agents Chemother. 2009;53(5):2052–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lu J, Vodnala SK, Gustavsson A-L, Gustafsson TN, Sjöberg B, Johansson HA, Kumar S, et al. Ebsulfur is a benzisothiazolone cytocidal inhibitor targeting the trypanothione reductase of Trypanosoma brucei. J Biol Chem. 2013;288:27456–68. doi:10.1074/jbc.M113.495101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lazarin-Bidóia D, Desoti VC, Ueda-Nakamura T, BPD F, Nakamura CV, Silva SO. Further evidence of the trypanocidal action of eupomatenoid-5: confirmation of involvement of reactive oxygen species and mitochondria owing to a reduction in trypanothione reductase activity. Free Radic Biol Med. 2013;60:17–28. doi:10.1016/j.freeradbiomed.2013.01.008.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepti Pandita Ph.D..

Ethics declarations

Conflict of Interest

Shikha Girdhar declares that she has no conflict of interest. Amit Girdhar declares that he has no conflict of interest. Viney Lather declares that he has no conflict of interest. Deepti Pandita declares that she has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Neglected Tropical Diseases

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Girdhar, S., Girdhar, A., Lather, V. et al. Novel Therapeutic Targets for Human African Trypanosomiasis. Curr Treat Options Infect Dis 9, 200–209 (2017). https://doi.org/10.1007/s40506-017-0120-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40506-017-0120-1

Keywords

Navigation