Skip to main content
Log in

Berezin-Toeplitz quantization and naturally defined star products for Kähler manifolds

  • Published:
Analysis and Mathematical Physics Aims and scope Submit manuscript

Abstract

For compact quantizable Kähler manifolds the Berezin-Toeplitz quantization schemes, both operator and deformation quantization (star product) are reviewed. The treatment includes Berezin’s covariant symbols and the Berezin transform. The general compact quantizable case was done by Bordemann–Meinrenken–Schlichenmaier, Schlichenmaier, and Karabegov–Schlichenmaier. For star products on Kähler manifolds, separation of variables, or equivalently star product of (anti-) Wick type, is a crucial property. As canonically defined star products the Berezin-Toeplitz, Berezin, and the geometric quantization are treated. It turns out that all three are equivalent, but different.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. For E not a line bundle the Berezin-Toeplitz star product is a star product in \(C^\infty (X,End(E))[[\nu ]]\). This might be considered as a quantization with additional internal degrees of freedom, see [32, Remark 2.27].

References

  1. Bayen, F., Flato, M., Fronsdal, C., Lichnerowicz, A., Sternheimer, D.: Deformation theory and quantization. Part I Lett. Math. Phys. 1, 521–530 (1977)

    Article  Google Scholar 

  2. Bayen, F., Flato, M., Fronsdal, C., Lichnerowicz, A., Sternheimer, D.: Deformation theory and quantization. Part II Ann. Phys. 111, 61–110 (1978)

    Article  Google Scholar 

  3. Bayen, F., Flato, M., Fronsdal, C., Lichnerowicz, A., Sternheimer, D.: Deformation theory and quantization. Part III Ann. Phys. 111, 111–151 (1978)

    Article  Google Scholar 

  4. Berezin, F.A.: Quantization. Math. USSR-Izv. 8, 1109–1165 (1974)

    Article  Google Scholar 

  5. Berezin, F.A.: Quantization in complex symmetric spaces. Math. USSR-Izv. 9, 341–379 (1975)

    Article  Google Scholar 

  6. Berezin, F.A.: General concept of quantization. Commun. Math. Phys 40, 153–174 (1975)

    Article  MathSciNet  Google Scholar 

  7. Bordemann, M., Meinrenken, E., Schlichenmaier, M.: Toeplitz quantization of Kähler manifolds and \(gl(n), n\rightarrow \infty \) limits. Commun. Math. Phys. 165, 281–296 (1994)

    Article  Google Scholar 

  8. Bordemann, M., Waldmann, St: A Fedosov star product of the Wick type for Kähler manifolds. Lett. Math. Phys. 41, 243–253 (1997)

    Article  MathSciNet  Google Scholar 

  9. Boutet de Monvel, L., Guillemin, V.: The spectral theory of Toeplitz operators. Ann. Math. Studies, vol. 99. Princeton University Press, Princeton (1981)

    MATH  Google Scholar 

  10. Boutet de Monvel, L., Sjoestrand, J.: Sur la singularité des noyaux de Bergman et de Szegö. Asterisque 34–35, 123–164 (1976)

  11. Cahen, M., Gutt, S., Rawnsley, J.: Quantization of Kähler manifolds I: Geometric interpretation of Berezin’s quantization. JGP 7, 45–62 (1990)

    MATH  Google Scholar 

  12. Cahen, M., Gutt, S., Rawnsley, J.: Quantization of Kähler manifolds II. Trans. Am. Math. Soc. 337, 73–98 (1993)

    MATH  Google Scholar 

  13. Cahen, M., Gutt, S., Rawnsley, J.: Quantization of Kähler manifolds III. Lett. Math. Phys. 30, 291–305 (1994)

    Article  MathSciNet  Google Scholar 

  14. Cahen, M., Gutt, S., Rawnsley, J.: Quantization of Kähler manifolds IV. Lett. Math. Phys. 34, 159–168 (1995)

    Article  MathSciNet  Google Scholar 

  15. Charles, L.: Berezin-Toeplitz operators, a semi-classical approach. Commun. Math. Phys. 239, 1–28 (2003)

    Article  MathSciNet  Google Scholar 

  16. Charles, L.: Semi-classical properties of geometric quantization with metaplectic corrections. Commun. Math. Phys. 270, 445–480 (2007)

    Article  MathSciNet  Google Scholar 

  17. De Wilde, M., Lecomte, P.B.A.: Existence of star products and of formal deformations of the Poisson-Lie algebra of arbitrary symplectic manifolds. Lett. Math. Phys. 7, 487–496 (1983)

    Article  MathSciNet  Google Scholar 

  18. Dito, G., Sternheimer, D.: Deformation quantization: genesis, developments, and metamorphoses. In: IRMA Lectures in Mathematical and Theoretical Physics, Vol. 1, pp. 9–54. Walter de Gruyter, Berlin (2002). arXiv:math.QA/0201168

  19. Engliš, M.: The asymptotics of a Laplace integral on a Kähler manifold. J. Reine Angew. Math. 528, 1–39 (2000)

    Article  MathSciNet  Google Scholar 

  20. Engliš, M.: Weighted Bergman kernels and quantization. Commun. Math. Phys. 227, 211–241 (2002)

    Article  MathSciNet  Google Scholar 

  21. Fedosov, B.V.: Deformation quantization and asymptotic operator representation. Funkt. Anal. i. Prilozhen. 25, 184–194 (1990)

    Article  MathSciNet  Google Scholar 

  22. Fedosov, B.V.: A simple geometric construction of deformation quantization. J. Differ. Geom. 40, 213–238 (1994)

    Article  Google Scholar 

  23. Gammelgaard, N.L.: A universal formula for deformation quantization on Kähler manifolds. arXiv:1005.2094

  24. Hawkins, E.: Geometric quantization of vector bundles and the correspondence with deformation quantization. Commun. Math. Phys. 215, 409–432 (2000)

    Article  MathSciNet  Google Scholar 

  25. Karabegov, A.V.: Deformation quantization with separation of variables on a Kähler manifold. Commun. Math. Phys. 180, 745–755 (1996)

    Article  Google Scholar 

  26. Karabegov, A.V.: Cohomological classification of deformation quantizations with separation of variables. Lett. Math. Phys. 43, 347–357 (1998)

    Article  MathSciNet  Google Scholar 

  27. Karabegov, A.V.: On Fedosov’s approach to deformation quantization with separation of variables. In: Dito, G., Sternheimer, D. (eds.) The Proceedings of the Conference Moshe Flato 1999, Vol. II, pp. 167–176. Kluwer (2000)

  28. Karabegov, A.V.: An explicit formula for a star product with separation of variables. Travaux mathematiques, vol. XX, pp. 145–152. Luxembourg (2012). arXiv:1106.4112

  29. Karabegov, A.V.: An invariant formula for a star product with separation of variables. J. Geom. Phys. 62(11), 2133–2139 (2012) arXiv:1107.5832

    Article  MathSciNet  Google Scholar 

  30. Karabegov, A.V., Schlichenmaier, M.: Identification of Berezin-Toeplitz deformation quantization. J. Reine Angew. Math. 540, 49–76 (2001)

    MathSciNet  MATH  Google Scholar 

  31. Kontsevich, M.: Deformation quantization of Poisson manifolds. Lett. Math. Phys. 66, 157–216 (2003). Preprint arXiv:q-alg/9709040

    Article  MathSciNet  Google Scholar 

  32. Ma, X., Marinescu, G.: Berezin-Toeplitz quantization and its kernel expansion. Trav. mathématiques 19, 125–166 (2011)

    MathSciNet  MATH  Google Scholar 

  33. Ma, X., Marinescu, G.: Berezin-Toeplitz quantization on Kähler manifolds. J. Reine Angew. Math. 662, 1–56 (2012)

    MathSciNet  MATH  Google Scholar 

  34. Moyal, J.: Quantum mechanics as a statistical theory. Proc. Camb. Philos. Soc. 45, 99–124 (1949)

    Article  MathSciNet  Google Scholar 

  35. Neumaier, N.: Universality of Fedosov’s construction for star products of Wick type on pseudo-Kähler manifolds. Rep. Math. Phys. 52, 43–80 (2003)

    Article  MathSciNet  Google Scholar 

  36. Omori, H., Maeda, Y., Yoshioka, A.: Weyl manifolds and deformation quantization. Adv. Math. 85, 224–255 (1991)

    Article  MathSciNet  Google Scholar 

  37. Omori, H., Maeda, Y., Yoshioka, A.: Existence of closed star-products. Lett. Math. Phys. 26, 284–294 (1992)

    Article  MathSciNet  Google Scholar 

  38. Rawnsley, J.H.: Coherent states and Kähler manifolds. Q. J. Math. Oxf. Ser. 2(28), 403–415 (1977)

    Article  Google Scholar 

  39. Reshetikhin, N., Takhtajan, L.: Deformation quantization of Kähler manifolds. Am. Math. Soc. Transl (2) 201, 257–276 (2000)

  40. Schlichenmaier, M.: Berezin-Toeplitz quantization of compact Kähler manifolds. In: Strasburger, A., Ali, S.T., Antoine, J.-P., Gazeau, J.-P., Odzijewicz, A. (eds.) Quantization, coherent states and Poisson structures. In: Proceedings XIV’th Workshop on Geometric Methods in Physics (Białowieża, Poland, 9-15 July 1995), pp. 101–115. Polish Scientific Publisher PWN (1998). arXiv:q-alg/9601016

  41. Schlichenmaier, M.: Zwei Anwendungen algebraisch-geometrischer Methoden in der theoretischen Physik: Berezin-Toeplitz-Quantisierung und globale Algebren der zweidimensionalen konformen Feldtheorie. Habiliationsschrift Universität Mannheim (1996)

  42. Schlichenmaier, M.: Deformation quantization of compact Kähler manifolds by Berezin-Toeplitz quantization, In: Dito, G., Sternheimer, D. (eds.) The Proceedings of the Conference Moshe Flato 1999, Vol. II, 289–306. Kluwer (2000). arXiv:math.QA/9910137

  43. Schlichenmaier, M.: Berezin-Toeplitz quantization and Berezin transform. In: Graffi, S., Martinez, A. (eds.) Long time behaviour of classical and quantum systems. In: Proceedings of the Bologna APTEX International Conference 13–17 September 1999, pp. 271–287. World-Scientific (2001)

  44. Schlichenmaier, M.: Berezin-Toeplitz quantization for compact Kähler manifolds. A review of results. Adv. Math. Phys. vol. 2010. https://doi.org/10.1155/2010/927280

    Article  Google Scholar 

  45. Schlichenmaier, M.: Berezin-Toeplitz quantization for compact Kähler manifolds. An introduction. Trav. Math. 19, 97–124 (2011)

    MATH  Google Scholar 

  46. Schlichenmaier, M.: Berezin-Toeplitz quantization and star products for compact Kähler manifolds. Contemp. Math. 583, 257–294 (2012). https://doi.org/10.1090/conm/583/11573

    Article  MATH  Google Scholar 

  47. Schlichenmaier, M.: Some naturally defined star products for Kähler manifolds. Trav. Math. 20, 187–204 (2012)

    Google Scholar 

  48. Tuynman, G.M.: Generalized Bergman kernels and geometric quantization. J. Math. Phys. 28, 573–583 (1987)

    Article  MathSciNet  Google Scholar 

  49. Weyl, H.: Gruppentheorie und Quantenmechanik. 1931, Leipzig, Nachdruck Wissenschaftliche Buchgesellschaft, Darmstadt (1977)

  50. Xu, H.: A closed formula for the asymptotic expansion of the Bergman kernel. Comm. Math. Phys. 314(3), 555–585 (2012). arXiv:1103.3060

    Article  MathSciNet  Google Scholar 

  51. Xu, H.: An explicit formula for the Berezin star product. Lett. Math. Phys. 101(3), 239–264 arXiv:1103.4175

    Article  MathSciNet  Google Scholar 

  52. Zelditch, S.: Szegö kernels and a theorem of Tian. Int. Math. Res. Not. 6, 317–331 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Schlichenmaier.

Additional information

To the memory of our dear friend Sasha Vasiliev who passed away so unexpectedly in the middle of his life. We all miss him.

Partial support by the Internal Research Project GEOMQ15, University of Luxembourg, and by the OPEN programme of the Fonds National de la Recherche (FNR), Luxembourg, project QUANTMOD O13/570706 is gratefully acknowledged.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schlichenmaier, M. Berezin-Toeplitz quantization and naturally defined star products for Kähler manifolds. Anal.Math.Phys. 8, 691–710 (2018). https://doi.org/10.1007/s13324-018-0225-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13324-018-0225-9

Keywords

Mathematics Subject Classification

Navigation