Skip to main content
Log in

Dirac cohomology on manifolds with boundary and spectral lower bounds

  • Original Paper
  • Published:
Partial Differential Equations and Applications Aims and scope Submit manuscript

Abstract

Along the lines of the classic Hodge–De Rham theory a general decomposition theorem for sections of a Dirac bundle over a compact Riemannian manifold is proved by extending concepts as exterior derivative and coderivative as well as elliptic absolute and relative boundary conditions for both Dirac and Dirac Laplacian operators. Dirac sections are shown to be a direct sum of harmonic, exact and coexact spinors satisfying alternatively absolute and relative boundary conditions. Cheeger’s estimation technique for spectral lower bounds of the Laplacian on differential forms is generalized to the Dirac Laplacian. A general method allowing to estimate Dirac spectral lower bounds for the Dirac spectrum of a compact Riemannian manifold in terms of the Dirac eigenvalues for a cover of 0-codimensional submanifolds is developed. Two applications are provided for the Atiyah–Singer operator. First, we prove the existence on compact connected spin manifolds of Riemannian metrics of unit volume with arbitrarily large first non zero eigenvalue, which is an already known result. Second, we prove that on a degenerating sequence of oriented, hyperbolic, three spin manifolds for any choice of the spin structures the first positive non zero eigenvalue is bounded from below by a positive uniform constant, which improves an already known result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Amman, B., Jammes, P.: The supremum of conformally covariant eigenvalues in a conformal class. In: Bielawski, Houston, Speight (eds.) Variational Problems in Differential Geometry, vol. 394, pp. 1–23. London Mathematical Society Lecture Note Series, Cambridge University Press, Cambridge (2011)

  2. Bär, C.: Das Spektrum von Dirac-Operatoren, Bonner mathematische Zeitschriften (1991)

  3. Bär, C.: Lower eigenvalue estimates for Dirac operators. Math. Ann. 293, 39–46 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bär, C.: Metrics with harmonic spinors. Geom. Funct. Anal. 6, 899–942 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bär, C.: The Dirac operator on hyperbolic manifolds of finite volume. J. Differ. Geom. 54, 439–488 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bär, C., Gauduchon, P., Moroianu, A.: Generalized cylinders in semi-Riemannian and spin geometry. Math. Z. 249(3), 545–580 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Benedetti, R., Petronio, C.: Lectures on Hyperbolic Geometry. Springer, Berlin (1991)

    MATH  Google Scholar 

  8. Berger, M.: Sur les premières valeurs propres des variétés riemanniennes. Compos. Math. 26, 129–149 (1973)

    MATH  Google Scholar 

  9. Berline, N., Getzler, E., Vergne, M.: Heat Kernels and Dirac Operators. Corrected Second Printing, Grundlehren der mathematischen Wissenschaften. Springer, Berlin (1996)

  10. Bleecker, D.: The spectrum of a Riemannian manifold with a unit killing vector field. Trans. Am. Math. Soc. 275, 409–416 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  11. Booß/Bavnbek, B., Wojciechowski, K.P.: Elliptic Boundary Problems for Dirac Operators. Birkhäuser, Basel (1993)

  12. Bourguignon, J.-P., Gauduchon, P.: Spineurs, Opérateurs de Dirac et Variations de Métriques. Commun. Math. Phys. 144, 581–599 (1992)

    Article  MATH  Google Scholar 

  13. Boutet De Monvel, L.: Boundary value problems for pseudodifferential operators. Acta Math. 126, 11–55 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chavel, I.: Eigenvalues in Riemannian Geometry. Academic Press, Cambridge (1984)

    MATH  Google Scholar 

  15. Chavel, I., Dodziuk, J.: The spectrum of degenerating hyperbolic manifolds of three dimensions. J. Differ. Geom. 39, 123–137 (1993)

    MATH  Google Scholar 

  16. Colbois, B., Courtois, G.: Les pétites valeurs propres des variétés hyperboliques de dimension 3, Prépublications de l’ Institut Fourier, Grenoble, 130 (1989)

  17. Colbois, B., Courtois, G.: Les valeurs propres inférieures á \(\frac{1}{4}\) des surfaces de Riemann de petit rayon d’injectivité. Comment. Math. Helv. 64, 349–362 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  18. Colbois, B., Dodziuk, J.: Riemannian metrics with large \(\lambda _1\). Proc. Am. Math. Soc. 122, 905–906 (1994)

    MATH  Google Scholar 

  19. Courant, R., Hilbert, D.: Methoden der mathematischen Physik. Springer, Berlin (1993)

    Book  MATH  Google Scholar 

  20. Dodziuk, J., Mc Gowan, J.: The spectrum of the Hodge Laplacian for a degenerating family of hyperbolic three manifolds. Trans. Am. Math. Soc. 347(6), 1985–1995 (1995)

    Article  MathSciNet  Google Scholar 

  21. Donnely, H.: On the essential spectrum of a complete Riemannian manifold. Topology 20, 1–14 (1981)

    Article  MathSciNet  Google Scholar 

  22. Farinelli, S., Schwarz, G.: On the spectrum of the Dirac operator under boundary conditions. J. Geom. Phys. 28(1–2), 67–84 (1998)

  23. Gentile, G., Pagliara, V.: Riemannian metrics with large first eigenvalue on forms of degree p. Proc. Am. Math. Soc. 123(12), 3855–3858 (1995)

    MathSciNet  MATH  Google Scholar 

  24. Gilkey, P.B.: On the index of geometric operators for Riemannian manifolds with boundary. Adv. Math. 102, 129–183 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gilkey, P.B.: Invariance Theory, the Heat Equation and the Atiyah–Singer Index Theorem. Publish or Perish, Delaware (1984)

  26. Gilkey, P.B.: Invariance Theory, the Heat Equation and the Atiyah–Singer Index Theorem, 2nd edn. Studies in Advanced Mathematics. CRC Press, Boca Raton (1995)

  27. Greiner, P.: An asymptotic expansion for the heat equation. In: Global Analysis, Berkeley 1968, Proceedings of Symposia in Pure Mathematics, vol. 16, pp. 133–137. American Mathematical Society, Providence (1970)

  28. Greiner, P.: An asymptotic expansion for the heat equation. Arch. Ration. Mech. Anal. 41, 163–218 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  29. Gromov, M.: Hyperbolic manifolds according to Thurston and Jørgensen. Sem. Bourbaki 546, 1–14 (1979)

    Google Scholar 

  30. Grubb, G.: Functional Calculus of Pseudodifferential Boundary Problems, 2nd edn. Birkäuser, Basel (1996)

    Book  MATH  Google Scholar 

  31. Hejhal, D.: Regular b-groups, degenerating Riemann surfaces and spectral theory. Mem. Am. Math. Soc. 437 (1990)

  32. Hersch, J.: Quatre propriétées isopérimétriques des membranes sphériques homogènes. C. R. Acad. Sei. Paris Sér. A 270, 139–144 (1970)

    Google Scholar 

  33. Hijazi, O., Montiel, S., Raulot, S.: A holographic principle for the existence of imaginary killing spinors. J. Geom. Phys. 91, 12–28 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  34. Hörmander, L.: The Analysis of Linear Partial Differential Operators III. Grundlehren der mathematischen Wissenschaften. Springer, Berlin (1985)

  35. Jammes, P.: Minoration du spectre des variétés hyperboliques de dimension 3. Bull. Soc. Math. Fr. 140(2), 237–255 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  36. Ji, L.: Spectral degeneration of hyperbolic Riemann surfaces. J. Differ. Geom. 38, 263–313 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  37. Ji, L., Zworski, M.: The remainder estimate in spectral accumulation for degenerating hyperbolic surfaces. J. Funct. Anal. 114, 412–420 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  38. Lawson, H.B., Michelsohn, M.-L.: Spin Geometry. Princeton University Press, Princeton (1989)

    MATH  Google Scholar 

  39. Mazzeo, R., Phillips, R.: Hodge theory on hyperbolic manifolds. Duke Math. J. 60, 509–559 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  40. Mc Gowan, J.: The p-spectrum of the Laplacian on compact hyperbolic three manifolds. Math. Ann. 279, 725–745 (1993)

    Article  MathSciNet  Google Scholar 

  41. Morrey, C.B.: A variational method in the theory of harmonic integrals, II. Am. J. Math. 78, 137–170 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  42. Pfäffle, F.: The Dirac spectrum of Bieberbach manifolds. J. Geom. Phys. 35, 367–385 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  43. Schwarz, G.: Hodge Decomposition—A Method for Solving Boundary Value Problems. Lecture Notes in Mathematics, vol. 1607. Springer, Berlin (1995)

  44. Seeley, R.T.: Singular integrals and boundary problems. Am. J. Math. 88, 781–809 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  45. Seeley, R.T.: The resolvent of an elliptic boundary value problem. Am. J. Math. 91, 889–920 (1969)

    Article  MATH  Google Scholar 

  46. Tanno, S.: Geometric expressions of Eigen 1-forms of the Laplacian on spheres. In: Berger, M., Murakami, S., Ochiai, T. (eds.) Spectral Riemannian Manifolds, pp. 115–128. Kaigai Publications, Tokyo (1983)

  47. Thurston, W.: The Geometry and Topology of \(3\) Manifolds. Princeton Lecture Notes, Princeton (1979)

  48. Urakawa, H.: On the least positive eigenvalue of the Laplacian for compact group manifolds. J. Math. Soc. Jpn. 31, 209–226 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  49. Wolpert, S.: Asymptotics of the spectrum and the Selberg zeta function on the space of Riemannian surfaces. Commun. Math. Phys. 112, 283–315 (1987)

    Article  MATH  Google Scholar 

  50. Xu, Y.: Diverging Eigenvalues and Collapsing Riemannian Metrics. Preprint, Institute for Advanced Study, Princeton (1992)

  51. Yang, P., Yau, S.-T.: Eigenvalues of the Laplacian of compact Riemann surfaces and minimal submanifolds. Ann. Scuola Norm. Sup. Pisa Cl. Sei. 4(7), 55–63 (1980)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Farinelli.

Ethics declarations

Conflict of interest

There are no data associated to this paper. The author states that there is no conflict of interest.

Additional information

This article is part of the section “Applications of PDEs” edited by Hyeonbae Kang.

Appendix: Some results about second order boundary value problems

Appendix: Some results about second order boundary value problems

Proposition 16

Let the function \(a=a(u)\) be a non trivial solution of the linear second order boundary value problem

$$\begin{aligned} {\left\{ \begin{array}{ll} -a^{\prime \prime }+qa=0 \\ a^{\prime }(m_0)+\alpha a(m_0)=0, \end{array}\right. } \end{aligned}$$
(128)

where \(q\in C^\infty ([m_0,m_1])\) is a smooth function satisfying \(q>k^2\) for constants \(k, \alpha \in \textbf{R}\) such that \(k>0\) and \(\alpha \le k.\) Then,  for the unique solution v of the initial value problem

$$\begin{aligned} {\left\{ \begin{array}{ll}-v^{\prime \prime }+k^2v=0\\ v(m_0)=a(m_0)\\ v^{\prime }(m_0)=a^{\prime }(m_0) \end{array}\right. } \end{aligned}$$
(129)

the following inequality holds on \([m_0,m_1]\):

$$\begin{aligned} \frac{a^{\prime }}{a}\ge \frac{v^{\prime }}{v}. \end{aligned}$$
(130)

In particular

$$\begin{aligned} \liminf _{m_1\rightarrow +\infty }\frac{a^\prime (m_1)}{a(m_1)}\ge \frac{1}{2}k. \end{aligned}$$
(131)

Proof

Without loss of generality we can prove the inequality on \([m_0,m_1[\) and choose \(m_0:=0\) and \(m_1=+\infty .\) We need to distinguish several cases:

case 0::

\(a(0)=0\) never occurs. In fact, both cases \(a(0)=0\) and \(a^{\prime }(0)=0\) are excluded by the assumption on the non triviality of a and by the existence and uniqueness theorem for the solutions of ordinary differential equations.

case 1::

\(a(0)>0.\)

Since \(a^{\prime }(0)=-\alpha a(0)>-ka(0),\) we obtain \(v(u)=a(0)\cosh (ku)+\frac{a^{\prime }(0)}{k}\sinh (ku)>0\) \(\forall u\in [0,+\infty [.\) With \(w:=a^{\prime }v-av^{\prime }\) it follows \(w^{\prime }=(q-k^2)av,\) \(w(0)=0\) and \(w^{\prime }(0)=(q(0)-k^2)v^2(0)>0.\) So, \(\varepsilon _1:=\sup \left\{ u\in ]0,+\infty [\;|\;w^{\prime }>0\;\text {on}\;]0,u[\right\} \) must belong to \(]0,+\infty ].\) If \(\varepsilon _1<+\infty ,\) then by continuity \(w^{\prime }(\varepsilon _1)=0.\)

Analogously, since \(a(0)>0,\) \(\varepsilon _2:=\sup \left\{ u\in ]0,+\infty [\;|\;a>0\;\text {on}\;]0,u[\right\} \) must be in \(]0,+\infty ].\) If \(\varepsilon _2<+\infty ,\) then by continuity \(a(\varepsilon _2)=0.\) Set \(\varepsilon :=\min \{\varepsilon _1,\varepsilon _2\}.\) On \([0,\varepsilon [\) one has \(w\ge 0,\) i.e. \(\frac{a^{\prime }}{a}\ge \frac{v^{\prime }}{v},\) being a and v positive. Integrating both sides of this inequality , one gets \(a\ge v\) on \([0,\varepsilon [.\) So, on this interval one has \(w^{\prime }(u)=(q-k^2)a(u)v(u)\ge (q(u)-k^2)v^2(u)=(q(u)-k^2)a^2(0)\cosh ^2(ku)\) and \(a(u)\ge v=a(0)\cosh (ku).\) Assume now that \(\varepsilon <\infty .\) There are two possibilities: if \(\varepsilon =\varepsilon _1,\) then by continuity \(w^{\prime }(\varepsilon _1)=(q(\varepsilon _1)-k^2)a^2(0)\cosh ^2(k\varepsilon _1)>0;\) if \(\varepsilon =\varepsilon _2,\) again by continuity \(a(\varepsilon _2)\ge a(0)\cosh (k\varepsilon _2)>0.\) In both cases there is a contradiction, so it must be \(\varepsilon =\infty .\) We therefore come to the conclusion that \(\frac{a^{\prime }}{a}\ge \frac{v^{\prime }}{v}\) on \([0,+\infty [.\)

case 2::

\(a(0)<0.\)

We set \(\bar{a}:=-a\) and \(\bar{v}:=-v.\) Case 1 leads to \(\frac{\bar{a}^{\prime }}{\bar{a}}\ge \frac{\bar{v}^{\prime }}{\bar{v}}\) on \([0,+\infty [,\) which means \(\frac{a^{\prime }}{a}\ge \frac{v^{\prime }}{v}\) on the same interval.

By solving the initial value problem for v,  we can determine v and \(v^\prime \) explicitly:

$$\begin{aligned} \begin{aligned} v(u)&=a(m_0)\cosh (k(u-m_0))+\frac{a^{\prime }(m_0)}{k}\sinh (k(u-m_0)) \\&\\ v^{\prime }(u)&=ka(m_0)\sinh (k(u-m_0))+a^{\prime }(m_0)\cosh (k(u-m_0)). \\ \end{aligned} \end{aligned}$$
(132)

Since \(v(u)\ne 0\) for \(u\in [m_0,m_1]\) we can write:

$$\begin{aligned} \frac{v^{\prime }(u)}{v(u)}=\,k\,\frac{a(m_0)\tanh (k(u-m_0))+\frac{1}{k}a^{\prime }(m_0)}{a(m_0) +\frac{1}{k}a^{\prime }(m_0)\tanh (k(u-m_0))}. \end{aligned}$$
(133)

We insert the boundary condition \(a^{\prime }(m_0)+\alpha a(m_0)=0\) and simplify by \(a(m_0)\ne 0\):

$$\begin{aligned} \frac{v^{\prime }(u)}{v(u)}=\,k\frac{\tanh (k(u-m_0))-\frac{\alpha }{k}}{1-\frac{\alpha }{k}\tanh (k(u-m_0))}. \end{aligned}$$
(134)

Since \(k>\alpha ,\) we obtain

$$\begin{aligned} \lim _{u\rightarrow +\infty }\frac{v^{\prime }(u)}{v(u)}=k \end{aligned}$$
(135)

and the inequality (131) follows from the estimate (130).

\(\square \)

Proposition 17

Let the function \(a=a(u)\) be a non trivial solution of the linear second order boundary value problem

$$\begin{aligned} {\left\{ \begin{array}{ll} -a^{\prime \prime }+qa=0 \\ a(m_0)=0, \end{array}\right. } \end{aligned}$$
(136)

where \(q\in C^\infty ([m_0,m_1])\) is a smooth function satisfying \(q>k^2\) for a constant \(k>0.\) Then,  for the unique solution v of the initial value problem

$$\begin{aligned} {\left\{ \begin{array}{ll}-v^{\prime \prime }+k^2v=0\\ v(m_0)=0\\ v^{\prime }(m_0)=a^{\prime }(m_0) \end{array}\right. } \end{aligned}$$
(137)

the following inequality holds on \(]m_0,m_1]\):

$$\begin{aligned} \frac{a^{\prime }}{a}\ge \frac{v^{\prime }}{v}. \end{aligned}$$
(138)

There exist \(\delta >m_0\) such that

$$\begin{aligned} \begin{aligned} a(u)&\ge a(\delta )e^{\frac{k(u-\delta )}{2}}>0\quad (a^{\prime }(m_0)>0)\\ a(u)&\le a(\delta )e^{\frac{k(u-\delta )}{2}}<0\quad (a^{\prime }(m_0)<0). \end{aligned} \end{aligned}$$
(139)

Proof

Without loss of generality we can prove the inequality on \([m_0,m_1[\) and choose \(m_0:=0\) and \(m_1=+\infty .\) We need to distinguish several cases:

case 0::

\(a^{\prime }(0)=0\) never occurs. Cf. case 0 in the proof of Proposition 16.

case 1::

\(a^{\prime }(0)>0.\)

There exist a \(\delta >0\) small enough such that \(a^{\prime }(\delta )>0\) and \(a(\delta )>0.\) Note that \(\alpha :=-\frac{a^{\prime }(\delta )}{a(\delta )}< k.\) We can continue by applying Proposition 16 and obtain the result stated.

case 2::

\(a(0)<0.\)

Analogously to case 2 in the proof of Proposition 16.

\(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farinelli, S. Dirac cohomology on manifolds with boundary and spectral lower bounds. Partial Differ. Equ. Appl. 4, 46 (2023). https://doi.org/10.1007/s42985-023-00264-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42985-023-00264-w

Keywords

Mathematics Subject Classification

Navigation