Skip to main content
Log in

An Explicit Formula for the Berezin Star Product

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We prove an explicit formula of the Berezin star product on Kähler manifolds. The formula is expressed as a summation over certain strongly connected digraphs. The proof relies on a combinatorial interpretation of Engliš’ work on the asymptotic expansion of the Laplace integral.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bayen F., Flato M., Fronsdal C., Lichnerowicz A., Sternheimer D.: Deformation theory and quantization. I. Deformation of symplectic structures. Ann. Phys. 111, 61–110 (1978)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Bayen F., Flato M., Fronsdal C., Lichnerowicz A., Sternheimer D.: Deformation theory and quantization. II. Physical applications. Ann. Phys. 111, 111–151 (1978)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Berezin F.A.: Quantization. Math. USSR Izvest. 8, 1109–1163 (1974)

    Article  MATH  Google Scholar 

  4. Berezin F.A.: Quantization in complex symmetric spaces. Math. USSR Izvest. 9, 341–379 (1975)

    Article  Google Scholar 

  5. Bordemann M., Meinrenken E., Schlichenmaier M.: Toeplitz quantization of Kähler manifolds and gl(N), N→∞ limits. Commun. Math. Phys. 165(2), 281–296 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Bordemann M., Waldmann S.: A Fedosov star product of the Wick type for Kähler manifolds. Lett. Math. Phys. 41, 243–253 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Boutet, L., de Monvel, Guillemin, V.: The spectral theory of Toeplitz operators. In: Annals of Mathematics Studies, vol. 99. Princeton University Press, Princeton (1981)

  8. Monvel L., Sjöstrand J.: Sur la singularité des noyau de Bergman et de Szegö. Astérisque 34–35, 123–164 (1976)

    Google Scholar 

  9. Cahen M., Gutt S., Rawnsley J.: Quantization of Kähler manifolds II. Trans. Am. Math. Soc. 337, 73–98 (1993)

    MathSciNet  MATH  Google Scholar 

  10. Cahen M., Gutt S., Rawnsley J.: Quantization of Kähler manifolds III. Lett. Math. Phys. 30, 291–305 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Cahen M., Gutt S., Rawnsley J.: Quantization of Kähler manifolds IV. Lett. Math. Phys. 34, 159–168 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Calabi E.: Isometric imbeddings of complex manifolds. Ann. Math. 58, 1–23 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  13. Catlin, D.: The Bergman kernel and a theorem of Tian. In: Analysis and geometry in several complex variables (Katata, 1997), pp. 1–23 (1999)

  14. Charles L.: Berezin–Toeplitz operators, a semi-classical approach. Commun. Math. Phys. 239, 1–28 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Cvetković D., Doob M., Sachs H.: Spectra of graphs. Academic Press, New York (1980)

    Google Scholar 

  16. Dai X., Liu K., Ma X.: On the asymptotic expansion of Bergman kernel. J. Diff. Geom. 72(1), 1–41 (2006)

    MathSciNet  MATH  Google Scholar 

  17. De Wilde M., Lecomte P.B.A.: Existence of the star-products and of formal deformations in Poisson–Lie algebra of arbitrary symplectic manifolds. Lett. Math. Phys. 7, 487–496 (1983)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Engliš M.: Berezin quantization and reproducing kernels on complex domains. Trans. Am. Math. Soc. 348, 411–479 (1996)

    Article  MATH  Google Scholar 

  19. Engliš M.: The asymptotics of a Laplace integral on a Kähler manifold. J. Reine Angew. Math. 528, 1–39 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  20. Engliš M.: A Forelli–Rudin construction and asymptotics of weighted Bergman kernels. J. Funct. Anal. 177, 257–281 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Engliš M.: Weighted Bergman kernels and quantization. Commun. Math. Phys. 227, 211–241 (2002)

    Article  ADS  MATH  Google Scholar 

  22. Engliš M.: Berezin and Berezin–Toeplitz quantizations for general function spaces. Rev. Mat. Complut. 19, 385–430 (2006)

    MathSciNet  MATH  Google Scholar 

  23. Engliš M., Peetre J.: On the correspondence principle for the quantized annulus. Math. Scand. 78, 183–206 (1996)

    MathSciNet  Google Scholar 

  24. Fedosov B.: A simple geometric construction of deformation quantization. J. Diff. Geom. 40, 213–238 (1994)

    MathSciNet  MATH  Google Scholar 

  25. Fefferman C.: The Bergman kernel and biholomorphic mappings of pseudo-convex domains. Invent. Math. 37, 1–65 (1974)

    Article  MathSciNet  ADS  Google Scholar 

  26. Fefferman C.: Parabolic invariant theory in complex analysis. Adv. Math. 31, 131–262 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  27. Fine, J.: Quantisation and the Hessian of Mabuchi energy, arXiv: 1009.4543

  28. Gammelgaard, N.: A universal formula for deformation quantization on Kähler manifolds. arxiv: 1005.2094

  29. Karabegov A.: Deformation quantizations with separation of variables on a Kähler manifold. Commun. Math. Phys. 180, 745–755 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Karabegov A.: On the canonical normalization of a trace density of deformation quantization. Lett. Math. Phys. 45, 217–228 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  31. Karabegov A.: A formal model of Berezin–Toeplitz quantization. Commun. Math. Phys. 274, 659–689 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  32. Karabegov, A.: An explicit formula for a star product with separation of variables. arXiv:1106.4112

  33. Karabegov, A.: An invariant formula for a star product with separation of variables. arXiv:1107.5832

  34. Karabegov A., Schlichenmaier M.: Identification of Berezin–Toeplitz deformation quantization. J. Reine Angew. Math. 540, 49–76 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  35. Kontsevich M.: Deformation quantization of Poisson manifolds. Lett. Math. Phys. 66(3), 157–216 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. Ligocka E.: Forelli–Rudin constructions and weighted Bergman projections. Studia Math. 94, 257–272 (1989)

    MathSciNet  MATH  Google Scholar 

  37. Loi A.: The Tian–Yau–Zelditch asymptotic expansion for real analytic Kähler metrics. Int. J. Geom. Methods Mod. Phys. 1, 253–263 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  38. Lu Z.: On the lower order terms of the asymptotic expansion of Tian–Yau–Zelditch. Am. J. Math. 122(2), 235–273 (2000)

    Article  MATH  Google Scholar 

  39. Ma X., Marinescu G.: Berezin–Toeplitz quantization of Kähler manifolds. J. Reine Angew. Math. 662, 1–56 (2012)

    MathSciNet  MATH  Google Scholar 

  40. Ma, X., Marinescu, G.: Holomorphic Morse Inequalities and Bergman Kernels. In: Progress in Mathematics, vol. 254, Birkhäuser, Boston (2007)

  41. Ma X., Marinescu G.: Toeplitz operators on symplectic manifolds. J. Geom. Anal. 18(2), 565–611 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  42. Moreno C.: *-products on some Kähler manifolds. Lett. Math. Phys. 11, 361–372 (1986)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  43. Moreno C., Ortega-Navarro P.: *-products on \({D^1(\mathbb C)}\) , S 2 and related spectral analysis. Lett. Math. Phys. 7, 181–193 (1983)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  44. Nakazawa N.: Asymptotic expansion of the Bergman kernel for strictly pseudoconvex complete Reinhardt domains in \({\mathbb C^2}\) . Osaka J. Math. 31, 291–329 (1994)

    MathSciNet  ADS  MATH  Google Scholar 

  45. Omori H., Maeda Y., Yoshioka A.: Weyl manifolds and deformation quantization. Adv. Math. 85, 225–255 (1991)

    Article  MathSciNet  Google Scholar 

  46. Omori H., Maeda Y., Yoshioka A.: Existence of a closed star product. Lett. Math. Phys. 26, 285–294 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  47. Reshetikhin, N., Takhtajan, L.: Deformation quantization of Kähler manifolds, L.D. Faddeev’s Seminar on Mathematical Physics. In: Amer. Math. Soc. Transl. Ser. 2, vol. 201, pp 257–276. Amer. Math. Soc., Providence (2000)

  48. Schlichenmaier, M.: Deformation quantization of compact Kähler manifolds by Berezin-Toeplitz quantization, In Conférence Moshé Flato (Dijon, 1999), vol. II, pp. 289–306, Kluwer, Dordrecht (2000)

  49. Schlichenmaier, M.: Berezin-Toeplitz quantization for compact Kähler manifolds. A review of results. Adv. Math. Phys. 2010, 38 (2010) (Article ID 927280)

  50. Tian G.: On a set of polarized Kähler metrics on algebraic manifolds. J. Diff. Geom. 32, 99–130 (1990)

    MATH  Google Scholar 

  51. Unterberger A., Upmeier H.: The Berezin transform and invariant differential operators. Commun. Math. Phys. 164, 563–597 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  52. Xu, H.: A closed formula for the asymptotic expansion of the Bergman kernel. arXiv:1103.3060

  53. Zelditch S.: Szegö kernel and a theorem of Tian. Int. Math. Res. Notices (6), 317–331 (1998)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, H. An Explicit Formula for the Berezin Star Product. Lett Math Phys 101, 239–264 (2012). https://doi.org/10.1007/s11005-012-0552-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-012-0552-y

Mathematics Subject Classification

Keywords

Navigation