Skip to main content
Log in

Insights into the application of let-7 family as promising biomarker in cancer screening

  • Research Article
  • Published:
Tumor Biology

Abstract

Cancer is a leading cause of death worldwide with its low 5-year survival rate. Studies on the accuracy of let-7 family for human cancers have inconsistent conclusions, leading us to conduct this meta-analysis. This meta-analysis comprised of 11 studies from eight articles involving 805 cancer patients and 483 controls. The pooled parameters were as follows: sensitivity, 77 % (95 % confidence interval (CI) 73–81 %); specificity, 80 % (95 % CI 68–88 %); positive likelihood ratio (PLR), 3.8; negative likelihood ratio (NLR), 0.29; and diagnostic odds ratio (DOR) 13.0. In addition, we plotted the SROC and calculated the area under the curve (AUC) of 0.81 (95 % CI 0.78–0.84), which indicated a relatively high descriptive accuracy. In summary, our data suggested that let-7 family might be applied in noninvasive screening tests for human cancers, which needed to be validated in further large-scale studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics, 2014. CA Cancer J Clin. 2014;64:9–29. doi:10.3322/caac.21208.

    Article  PubMed  Google Scholar 

  2. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90. doi:10.3322/caac.20107.

    Article  PubMed  Google Scholar 

  3. Leone G, Fianchi L, Pagano L, Voso MT. Incidence and susceptibility to therapy-related myeloid neoplasms. Chem Biol Interact. 2010;184:39–45. doi:10.1016/j.cbi.2009.12.013.

    Article  CAS  PubMed  Google Scholar 

  4. Sessions DG, Spector GJ, Lenox J, Haughey B, Chao C, Marks J. Analysis of treatment results for oral tongue cancer. Laryngoscope. 2002;112:616–25. doi:10.1097/00005537-200204000-00005.

    Article  PubMed  Google Scholar 

  5. Wang Q, Wu X, Wu T, Li GM, Shi Y. Clinical significance of RKIP mRNA expression in non-small cell lung cancer. Tumour Biol. 2014;35:4377–80. doi:10.1007/s13277-013-1575-4.

    Article  CAS  PubMed  Google Scholar 

  6. El-Serag HB, Rudolph KL. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology. 2007;132:2557–76. doi:10.1053/j.gastro.2007.04.061.

    Article  CAS  PubMed  Google Scholar 

  7. Wittmann J, Jack HM. Serum microRNAs as powerful cancer biomarkers. Biochim Biophys Acta. 1806;2010:200–7. doi:10.1016/j.bbcan.2010.07.002.

    Google Scholar 

  8. Dominioni L, Imperatori A, Rovera F, Ochetti A, Torrigiotti G, Paolucci M. Stage I nonsmall cell lung carcinoma: analysis of survival and implications for screening. Cancer. 2000;89:2334–44.

    Article  CAS  PubMed  Google Scholar 

  9. Oken MM, Marcus PM, Hu P, Beck TM, Hocking W, Kvale PA, et al. Baseline chest radiograph for lung cancer detection in the randomized prostate, lung, colorectal and ovarian cancer Screening Trial. J Natl Cancer Inst. 2005;97:1832–9. doi:10.1093/jnci/dji430.

    Article  PubMed  Google Scholar 

  10. Henschke CI, Yankelevitz DF, Libby DM, Pasmantier MW, Smith JP, Miettinen OS. Survival of patients with stage I lung cancer detected on CT screening. N Engl J Med. 2006;355:1763–71. doi:10.1056/NEJMoa060476.

    Article  PubMed  Google Scholar 

  11. Mascalchi M, Belli G, Zappa M, Picozzi G, Falchini M, Della Nave R, et al. Risk-benefit analysis of X-ray exposure associated with lung cancer screening in the Italung-CT trial. AJR Am J Roentgenol. 2006;187:421–9. doi:10.2214/AJR.05.0088.

    Article  PubMed  Google Scholar 

  12. Taplin S, Abraham L, Barlow WE, Fenton JJ, Berns EA, Carney PA, et al. Mammography facility characteristics associated with interpretive accuracy of screening mammography. J Natl Cancer Inst. 2008;100:876–87. doi:10.1093/jnci/djn172.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Neri E, Faggioni L, Cerri F, Turini F, Angeli S, Cini L, et al. CT colonography versus double-contrast barium enema for screening of colorectal cancer: comparison of radiation burden. Abdom Imaging. 2010;35:596–601. doi:10.1007/s00261-009-9568-x.

    Article  PubMed  Google Scholar 

  14. Lumachi F, Brandes AA, Ermani M, Bruno G, Boccagni P. Sensitivity of serum tumor markers CEA and CA 15-3 in breast cancer recurrences and correlation with different prognostic factors. Anticancer Res. 2000;20:4751–5.

    CAS  PubMed  Google Scholar 

  15. Hanash SM, Baik CS, Kallioniemi O. Emerging molecular biomarkers—blood-based strategies to detect and monitor cancer. Nat Rev Clin Oncol. 2011;8:142–50. doi:10.1038/nrclinonc.2010.220.

    Article  PubMed  Google Scholar 

  16. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75:843–54.

    Article  CAS  PubMed  Google Scholar 

  17. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.

    Article  CAS  PubMed  Google Scholar 

  18. Cho WC. OncomiRs: the discovery and progress of microRNAs in cancers. Mol Cancer. 2007;6:60. doi:10.1186/1476-4598-6-60.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Nana-Sinkam P, Croce CM. MicroRNAs in diagnosis and prognosis in cancer: what does the future hold? Pharmacogenomics. 2010;11:667–9. doi:10.2217/pgs.10.57.

    Article  CAS  PubMed  Google Scholar 

  20. Taft RJ, Pang KC, Mercer TR, Dinger M, Mattick JS. Non-coding RNAs: regulators of disease. J Pathol. 2010;220:126–39. doi:10.1002/path.2638.

    Article  CAS  PubMed  Google Scholar 

  21. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, et al. MicroRNA expression profiles classify human cancers. Nature. 2005;435:834–8. doi:10.1038/nature03702.

    Article  CAS  PubMed  Google Scholar 

  22. Weber JA, Baxter DH, Zhang S, Huang DY, Huang KH, Lee MJ, et al. The microRNA spectrum in 12 body fluids. Clin Chem. 2010;56:1733–41. doi:10.1373/clinchem.2010.147405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Abd-El-Fattah AA, Sadik NA, Shaker OG, Aboulftouh ML. Differential microRNAs expression in serum of patients with lung cancer, pulmonary tuberculosis, and pneumonia. Cell Biochem Biophys. 2013;67:875–84. doi:10.1007/s12013-013-9575-y.

    Article  CAS  PubMed  Google Scholar 

  24. Ruby JG, Jan C, Player C, Axtell MJ, Lee W, Nusbaum C, et al. Large-scale sequencing reveals 21U-RNAs and additional microRNAs and endogenous siRNAs in C. elegans. Cell. 2006;127:1193–207. doi:10.1016/j.cell.2006.10.040.

    Article  CAS  PubMed  Google Scholar 

  25. Pasquinelli AE, Reinhart BJ, Slack F, Martindale MQ, Kuroda MI, Maller B, et al. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature. 2000;408:86–9. doi:10.1038/35040556.

    Article  CAS  PubMed  Google Scholar 

  26. Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature. 2000;403:901–6. doi:10.1038/35002607.

    Article  CAS  PubMed  Google Scholar 

  27. Heneghan HM, Miller N, Kelly R, Newell J, Kerin MJ. Systemic miRNA-195 differentiates breast cancer from other malignancies and is a potential biomarker for detecting noninvasive and early stage disease. Oncologist. 2010;15:673–82. doi:10.1634/theoncologist. 2010-0103.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Jeong HC, Kim EK, Lee JH, Lee JM, Yoo HN, Kim JK. Aberrant expression of let-7a miRNA in the blood of non-small cell lung cancer patients. Mol Med Rep. 2011;4:383–7. doi:10.3892/mmr.2011.430.

    CAS  PubMed  Google Scholar 

  29. Liu SS, Wang YS, Sun YF, Miao LX, Wang J, Li YS, et al. Plasma microRNA-320, microRNA-let-7e and microRNA-21 as novel potential biomarkers for the detection of retinoblastoma. Biomed Rep. 2014;2:424–8. doi:10.3892/br.2014.246.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Whiting PF, Rutjes AW, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med. 2011;155:529–36. doi:10.7326/0003-4819-155-8-201110180-00009.

    Article  PubMed  Google Scholar 

  31. Mitchell AJ, Vaze A, Rao S. Clinical diagnosis of depression in primary care: a meta-analysis. Lancet. 2009;374:609–19. doi:10.1016/S0140-6736(09)60879-5.

    Article  PubMed  Google Scholar 

  32. Swets JA. Measuring the accuracy of diagnostic systems. Science. 1988;240:1285–93.

    Article  CAS  PubMed  Google Scholar 

  33. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21:1539–58. doi:10.1002/sim.1186.

    Article  PubMed  Google Scholar 

  34. Dinnes J, Deeks J, Kirby J, Roderick P. A methodological review of how heterogeneity has been examined in systematic reviews of diagnostic test accuracy. Health Technol Assess. 2005;9:1–113.

    Article  CAS  Google Scholar 

  35. Deeks JJ, Macaskill P, Irwig L. The performance of tests of publication bias and other sample size effects in systematic reviews of diagnostic test accuracy was assessed. J Clin Epidemiol. 2005;58:882–93. doi:10.1016/j.jclinepi.2005.01.016.

    Article  PubMed  Google Scholar 

  36. Zheng H, Zhang L, Zhao Y, Yang D, Song F, Wen Y, et al. Plasma miRNAs as diagnostic and prognostic biomarkers for ovarian cancer. PLoS One. 2013;8:e77853. doi:10.1371/journal.pone.0077853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lee CH, Kuo WH, Lin CC, Oyang YJ, Huang HC, Juan HF. MicroRNA-regulated protein-protein interaction networks and their functions in breast cancer. Int J Mol Sci. 2013;14:11560–606. doi:10.3390/ijms140611560.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Maclellan SA, Lawson J, Baik J, Guillaud M, Poh CF, Garnis C. Differential expression of miRNAs in the serum of patients with high-risk oral lesions. Cancer Med. 2012;1:268–74. doi:10.1002/cam4.17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chen ZH, Zhang GL, Li HR, Luo JD, Li ZX, Chen GM, et al. A panel of five circulating microRNAs as potential biomarkers for prostate cancer. Prostate. 2012;72:1443–52. doi:10.1002/pros.22495.

    Article  CAS  PubMed  Google Scholar 

  40. Mahn R, Heukamp LC, Rogenhofer S, von Ruecker A, Muller SC, Ellinger J. Circulating microRNAs (miRNA) in serum of patients with prostate cancer. Urology. 2011;77:1265 e9-16. doi:10.1016/j.urology.2011.01.020.

  41. Rosenfeld RM, Shiffman RN. Clinical practice guidelines: a manual for developing evidence-based guidelines to facilitate performance measurement and quality improvement. Otolaryngol Head Neck Surg. 2006;135:S1–28. doi:10.1016/j.otohns.2006.06.1277.

    Article  PubMed  Google Scholar 

  42. Stengel D, Bauwens K, Sehouli J, Ekkernkamp A, Porzsolt F. A likelihood ratio approach to meta-analysis of diagnostic studies. J Med Screen. 2003;10:47–51.

    Article  CAS  PubMed  Google Scholar 

  43. McShane LM, Altman DG, Sauerbrei W, Taube SE, Gion M, Clark GM. REporting recommendations for tumour MARKer prognostic studies (REMARK). Br J Cancer. 2005;93:387–91. doi:10.1038/sj.bjc.6602678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Conflicts of interest

There is no financial/other relationship to be declared.

Declaration of funding

This work was supported by Shenyang Municipal Science and Technology Program Funded Projects (No. F 12-278-6-09), Science and Technology Project of Liaoning Province (No. 2012029), and Liaoning Medical Peak Construction Engineering Projects (No. 2011415052-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youhong Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, Y., Wang, D., Tian, X. et al. Insights into the application of let-7 family as promising biomarker in cancer screening. Tumor Biol. 36, 5233–5239 (2015). https://doi.org/10.1007/s13277-015-3180-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-015-3180-1

Keywords

Navigation