Skip to main content

Advertisement

Log in

Differential MicroRNAs Expression in Serum of Patients with Lung Cancer, Pulmonary Tuberculosis, and Pneumonia

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) play critical regulatory roles in the physiological and pathological processes. The high stability of miRNAs in human serum represents attractive novel diagnostic biomarkers of clinical conditions. Several studies have shown that aberrant expression of miRNAs in human cancer including lung cancer, but little is known about their effects on some infectious lung diseases such as pulmonary tuberculosis (TB) and pneumonia. In this study, we investigated miRNA expression pattern in serum of Egyptian patients with lung cancer, TB, and pneumonia compared with matched healthy controls. Using microarray-based expression profiling followed by real-time quantitative polymerase chain reaction validation, we compared the levels of a series of circulating miRNAs (miR-21, miR-155, miR-182, and miR-197) in serum from patients with lung cancer (n = 65), pulmonary tuberculosis (n = 29), pneumonia (n = 29), and transudate (n = 16) compared with matched healthy controls (n = 37). MiRNA SNORD68 was the housekeeping endogenous control. We found that the serum levels of miR-21, miR-155, and miR-197 were significantly elevated in the patients with lung cancer and pneumonia whereas miR-182 and miR-197 levels were increased only in patients with lung cancer and TB, respectively, compared with controls. Receiver operating characteristic analysis revealed that miR-182, miR-155, and miR-197 have superior diagnostic potential in discriminating patients with lung cancer, pneumonia, and TB, respectively, from controls. Our results conclude that the differential expression of the four studied miRNAs can be potential non-invasive biomarkers for patients with lung cancer, TB and pneumonia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ALT:

Alanine aminotransferase

AST:

Aspartate aminotransferase

AUC:

Area under the curve

CT:

Cycle threshold

MIP-2:

Macrophage-inflammatory protein-2

miRNAs:

microRNAs

PE:

Pleural effusion

TB:

Pulmonary tuberculosis

RT-qPCR:

Real-time reverse transcription quantitative polymerase chain reaction

ROC:

Receiver operating characteristic

TLR:

Toll-like receptor

TNF-α:

Tumor necrosis factor-alpha

References

  1. Chen, X., Leung, S. Y., Yuen, S. T., Chu, K. M., Ji, J., Li, R., et al. (2003). Variation in gene expression patterns in human gastric cancers. Molecular Biology of the Cell, 14, 3208–3215.

    Article  PubMed  CAS  Google Scholar 

  2. Liu, J., Carmell, M. A., Rivas, F. V., Marsden, C. G., Thomson, J. M., Song, J.-J., et al. (2004). Argonaute2 is the catalytic engine of mammalian RNAi. Science, 305, 1437–1441.

    Article  PubMed  CAS  Google Scholar 

  3. Neilson, J. R., & Sharp, P. A. (2008). Small RNA regulators of gene expression. Cell, 134, 899–902.

    Article  PubMed  CAS  Google Scholar 

  4. Fabbri, M., Garzon, R., Cimmino, A., Liu, Z., Zanesi, N., Callegari, E., et al. (2007). MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proceedings of the National Academy of Sciences of the United States of America, 104, 15805–15810.

    Article  PubMed  CAS  Google Scholar 

  5. Mertens-Talcott, S. U., Chintharlapalli, S., Li, X., & Safe, S. (2007). The oncogenic microRNA-27a targets genes that regulate specificity protein transcription factors and the G2-M checkpoint in MDA-MB-231 breast cancer cells. Cancer Research, 67, 11001–11011.

    Article  PubMed  CAS  Google Scholar 

  6. Lewis, B. P., Burge, C. B., & Bartel, D. P. (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 120, 15–20.

    Article  PubMed  CAS  Google Scholar 

  7. Calin, G. A., & Croce, C. M. (2006). MicroRNA signatures in human cancers. Nature Reviews Cancer, 6, 857–866.

    Article  PubMed  CAS  Google Scholar 

  8. Calin, G. A., & Croce, C. M. (2006). MicroRNA-cancer connection: The beginning of a new tale. Cancer Research, 66, 7390–7394.

    Article  PubMed  CAS  Google Scholar 

  9. Esquela-Kerscher, A., & Slack, F. J. (2006). Oncomirs: MicroRNAs with a role in cancer. Nature Reviews Cancer, 6, 259–269.

    Article  PubMed  CAS  Google Scholar 

  10. Lu, J., Getz, G., Miska, E. A., Alvarez-Saavedra, E., Lamb, J., Peck, D., et al. (2005). MicroRNA expression profiles classify human cancers. Nature, 435, 834–838.

    Article  PubMed  CAS  Google Scholar 

  11. Shenouda, S. K., & Alahari, S. K. (2009). MicroRNA function in cancer: Oncogene or a tumor suppressor? Cancer Metastasis Reviews, 28, 369–378.

    Article  PubMed  CAS  Google Scholar 

  12. Garofalo, M., Condorelli, G. L., Croce, C. M., & Condorelli, G. (2010). MicroRNAs as regulators of death receptors signaling. Cell Death and Differentiation, 17, 200–208.

    Article  PubMed  CAS  Google Scholar 

  13. Kouhkan, F., Alizadeh, S., Kaviani, S., Soleimani, M., Pourfathollah, A. A., Amirizadeh, N., et al. (2011). miR-155 down regulation by LNA inhibitor can reduce cell growth and proliferation in PC12 cell line. Avicenna Journal of Medical Biotechnology, 3, 61–66.

    PubMed  CAS  Google Scholar 

  14. Henschke, C. I., & Yankelevitz, D. F. (2008). CT screening for lung cancer: Update 2007. The Oncologist, 13, 65–78.

    Article  PubMed  Google Scholar 

  15. Kuper, H., Adami, H.-O., & Trichopouos, D. (2000). Infections as a major preventable cause of human cancer. Journal of Internal Medicine, 248, 171–183.

    Article  PubMed  CAS  Google Scholar 

  16. McCall, C. E., & Yoza, B. K. (2007). Gene silencing in severe systemic inflammation. American Journal of Respiratory and Critical Care Medicine, 175, 763–767.

    Article  PubMed  CAS  Google Scholar 

  17. Sonkoly, E., Stahle, M., & Pivarcsi, A. (2008). MicroRNAs and immunity: Novel players in the regulation of normal immune function and inflammation. Seminars in Cancer Biology, 18, 131–140.

    Article  PubMed  CAS  Google Scholar 

  18. Nana-Sinkam, S. P., Hunter, M. G., Nuovo, G. J., Schmittgen, T. D., Gelinas, R., Galas, D., et al. (2009). Integrating the MicroRNome into the study of lung disease. American Journal of Respiratory and Critical Care Medicine, 179, 4–10.

    Article  PubMed  CAS  Google Scholar 

  19. O’Connell, R. M., Rao, D. S., Chaudhuri, A. A., & Baltimore, D. (2010). Physiological and pathological roles for microRNAs in the immune system. Nature Reviews Immunology, 10, 111–122.

    Article  PubMed  Google Scholar 

  20. Dye, C., & Williams, B. G. (2010). The population dynamics and control of tuberculosis. Science, 328, 856–861.

    Article  PubMed  CAS  Google Scholar 

  21. Chen, X., Ba, Y., Ma, L., Cai, X., Yin, Y., Wang, K., et al. (2008). Characterization of microRNAs in serum: A novel class of biomarkers for diagnosis of cancer and other diseases. Cell Research, 18, 997–1006.

    Article  PubMed  CAS  Google Scholar 

  22. Mitchell, P. S., Parkin, R. K., Kroh, E. M., Fritz, B. R., Wyman, S. K., Pogosova-Agadjanyan, E. L., et al. (2008). Circulating microRNAs as stable blood-based markers for cancer detection. Proceedings of the National Academy of Sciences of the United States of America, 105, 10513–10518.

    Article  PubMed  CAS  Google Scholar 

  23. McDonald, J. S., Milosevic, D., Reddi, H. V., Grebe, S. K., & Algeciras-Schimnich, A. (2011). Analysis of circulating microRNA: Preanalytical and analytical challenges. Clinical Chemistry, 57, 833–840.

    Article  PubMed  CAS  Google Scholar 

  24. Arroyo, J. D., Chevillet, J. R., Kroh, E. M., Ruf, I. K., Pritchard, C. C., Gibson, D. F., et al. (2011). Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proceedings of the National Academy of Sciences of the United States of America, 108, 5003–5008.

    Article  PubMed  CAS  Google Scholar 

  25. Yanaihara, N., Caplen, N., Bowman, E., Seike, M., Kumamoto, K., Yi, M., et al. (2006). Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell, 9, 189–198.

    Article  PubMed  CAS  Google Scholar 

  26. Zhao, H., Shen, J., Medico, L., Wang, D., Ambrosone, C. B., & Liu, S. (2010). A pilot study of circulating miRNAs as potential biomarkers of early stage breast cancer. PLoS One, 5(10), e13735.

    Article  PubMed  Google Scholar 

  27. Heegaard, N. H. H., Schetter, A. J., Welsh, J. A., Yoneda, M., Bowman, E. D., & Harris, C. C. (2012). Circulating micro-RNA expression profiles in early stage nonsmall cell lung cancer. International Journal of Cancer, 130, 1378–1386.

    Article  CAS  Google Scholar 

  28. Light, R. W., MacGregor, M. I., Luchsinger, P. C., & Ball, C. W. (1972). Pleural effusions: The diagnostic separation of transudates and exudates. Annals of Internal Medicine, 77, 507–513.

    Article  PubMed  CAS  Google Scholar 

  29. Light, R. W. (1983). Pleural diseases. Philadelphia, PA: Lea and Febiger.

    Google Scholar 

  30. Guisti, G. (1974). Adenosine deaminase. In: H. V. Bergmeyer (Ed), Methods of enzymatic analysis (pp. 1092–1099). New York, NY: Academic Press.

  31. Barshack, I., Lithwick-Yanai, G., Afek, A., Rosenblatt, K., Tabibian-Keissar, H., Zepeniuk, M., et al. (2010). MicroRNA expression differentiates between primary lung tumors and metastases to the lung. Pathology, Research and Practice, 206, 578–584.

    Article  PubMed  CAS  Google Scholar 

  32. Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C (T)) method. Methods, 25, 402–408.

    Article  PubMed  CAS  Google Scholar 

  33. Shen, J., Todd, N. W., Zhang, H., Yu, L., Lingxiao, X., Mei, Y., et al. (2011). Plasma microRNAs as potential biomarkers for non-small-cell lung cancer. Laboratory investigation; A Journal of Technical Methods and Pathology, 91, 579–587.

    Article  PubMed  CAS  Google Scholar 

  34. Wang, F., Zheng, Z., Guo, J., & Ding, X. (2010). Correlation and quantitation of microRNA aberrant expression in tissues and sera from patients with breast tumor. Gynecologic Oncology, 119, 586–593.

    Article  PubMed  CAS  Google Scholar 

  35. Gallo, A., Tandon, M., Alevizos, I., & Illei, G. G. (2012). The majority of microRNAs detectable in serum and saliva is concentrated in exosomes. PLoS One, 7, e30679.

    Article  PubMed  CAS  Google Scholar 

  36. Valadi, H., Ekstrom, K., Bossios, A., Sjostrand, M., Lee, J. J., & Lotvall, J. O. (2007). Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature Cell Biology, 9, 654–659.

    Article  PubMed  CAS  Google Scholar 

  37. Kosaka, N., Iguchi, H., Yoshioka, Y., Takeshita, F., Matsuki, Y., & Ochiya, T. (2010). Secretory mechanisms and intercellular transfer of microRNAs in living cells. The Journal of biological chemistry, 285, 17442–17452.

    Article  PubMed  CAS  Google Scholar 

  38. Taylor, D. D., & Gercel-Taylor, C. (2008). MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecologic Oncology, 110, 13–21.

    Article  PubMed  CAS  Google Scholar 

  39. Kong, W. (2010). The Role of microRNA-155 in human breast cancer. Graduate School Theses and Dissertations, South Florida. http://scholarcommons.usf.edu/etd/3647.

  40. Jiang, S., Zhang, H. W., Lu, M. H., He, X. H., Li, Y., Gu, H., et al. (2010). MicroRNA-155 functions as an OncomiR in breast cancer by targeting the suppressor of cytokine signaling 1 gene. Cancer Research, 70, 3119–3127.

    Article  PubMed  CAS  Google Scholar 

  41. Markou, A., Tsaroucha, E. G., Kaklamanis, L., Fotinou, M., Georgoulias, V., & Lianidou, E. S. (2008). Prognostic value of mature microRNA-21 and microRNA-205 overexpression in non-small cell lung cancer by quantitative real-time RT-PCR. Clinical Chemistry, 54, 1696–1704.

    Article  PubMed  CAS  Google Scholar 

  42. Zhu, S., Wu, H., Wu, F., Nie, D., Sheng, S., & Mo, Y. Y. (2008). MicroRNA-21 targets tumor suppressor genes in invasion and metastasis. Cell Research, 18, 350–359.

    Article  PubMed  CAS  Google Scholar 

  43. Iliopoulos, D., Jaeger, S. A., Hirsch, H. A., Bulyk, M. L., & Struhl, K. (2010). STAT3 activation of miR-21 and miR-181b-1 via PTEN and CYLD are part of the epigenetic switch linking inflammation to cancer. Molecular Cell, 39, 493–506.

    Article  PubMed  CAS  Google Scholar 

  44. Meng, F., Henson, R., Wehbe-Janek, H., Ghoshal, K., Jacob, S. T., & Patel, T. (2007). MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology, 133, 647–658.

    Article  PubMed  CAS  Google Scholar 

  45. Frankel, L. B., Christoffersen, N. R., Jacobsen, A., Lindow, M., Krogh, A., & Lund, A. H. (2008). Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. The Journal of biological chemistry, 283, 1026–1033.

    Article  PubMed  CAS  Google Scholar 

  46. Wang, K., Zhang, S., Weber, J., Baxter, D., & Galas, D. J. (2010). Export of microRNAs and microRNA-protective protein by mammalian cells. Nucleic Acids Research, 38, 7248–7259.

    Article  PubMed  CAS  Google Scholar 

  47. Volinia, S., Calin, G. A., Liu, C. G., Ambs, S., Cimmino, A., Petrocca, F., et al. (2006). A microRNA expression signature of human solid tumors defines cancer gene targets. Proceedings of the National Academy of Sciences of the United States of America, 103, 2257–2261.

    Article  PubMed  CAS  Google Scholar 

  48. Yu, S. L., Chen, H. Y., Chang, G. C., Chen, C. Y., Chen, H. W., Singh, S., et al. (2008). MicroRNA signature predicts survival and relapse in lung cancer. Cancer Cell, 13, 48–57.

    Article  PubMed  CAS  Google Scholar 

  49. Zheng, D., Haddadin, S., Wang, Y., Gu, L.-Q., Perry, M. C., Freter, C. E. X., et al. (2011). Plasma microRNAs as novel biomarkers for early detection of lung cancer. International Journal of Clinical and Experimental Pathology, 4, 575–586.

    PubMed  CAS  Google Scholar 

  50. Zhang, L., Volinia, S., Bonome, T., Calin, G. A., Greshock, J., Yang, N., et al. (2008). Genomic and epigenetic alterations deregulate microRNA expression in human epithelial ovarian cancer. Proceedings of the National Academy of Sciences of the United States of America, 105, 7004–7009.

    Article  PubMed  CAS  Google Scholar 

  51. Sun, Y., Fang, R., Li, C., Li, L., Li, F., Ye, X., et al. (2010). Hsa-mir-182 suppresses lung tumorigenesis through down regulation of RGS17 expression in vitro. Biochemical and Biophysical Research Communications, 396, 501–507.

    Article  PubMed  CAS  Google Scholar 

  52. Kong, W.-Q., Bai, R., Liu, T., Cai, C.-L., Liu, M., Li, X., et al. (2012). MicroRNA-182 targets cAMP-responsive element-binding protein 1 and suppresses cell growth in human gastric adenocarcinoma. FEBS Journal, 279(7), 1252–1260.

    Article  PubMed  CAS  Google Scholar 

  53. Schulte, L. N., Eulalio, A., Mollenkopf, H. J., Reinhardt, R., & Vogel, J. (2011). Analysis of the host microRNA response to Salmonella uncovers the control of major cytokines by the let-7 family. The EMBO Journal, 30, 1977–1989.

    Article  PubMed  CAS  Google Scholar 

  54. Moschos, S. A., Williams, A. E., Perry, M. M., Birrell, M. A., Belvisi, M. G., & Lindsay, M. A. (2007). Expression profiling in vivo demonstrates rapid changes in lung microRNA levels following lipopolysaccharide-induced inflammation but not in the anti-inflammatory action of glucocorticoids. BMC Genomics, 8, 240.

    Article  PubMed  Google Scholar 

  55. Liew, F. Y., Xu, D., Brint, E. K., & O’Neill, L. A. J. (2005). Negative regulation of toll-like receptor-mediated immune responses. Nature Reviews Immunology, 5, 446–458.

    Article  PubMed  CAS  Google Scholar 

  56. Gilroy, D. W., Lawrence, T., Perretti, M., & Rossi, A. G. (2004). Inflammatory resolution: New opportunities for drug discovery. Nature Reviews Drug Discovery, 3, 401–416.

    Article  PubMed  CAS  Google Scholar 

  57. Taganov, K. D., Boldin, M. P., Chang, K. J., & Baltimore, D. (2006). NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proceedings of the National Academy of Sciences of the United States of America, 103, 12481–12486.

    Article  PubMed  CAS  Google Scholar 

  58. O’Connell, R. M., Taganov, K. D., Boldin, M. P., Cheng, G., & Baltimore, D. (2007). MicroRNA-155 is induced during the macrophage inflammatory response. Proceedings of the National Academy of Sciences of the United States of America, 104, 1604–1609.

    Article  PubMed  Google Scholar 

  59. Rodriguez, A., Vigorito, E., Clare, S., Warren, M. V., Couttet, P., Soond, D. R., et al. (2007). Requirement of bic/microRNA-155 for normal immune function. Science, 316, 608–611.

    Article  PubMed  CAS  Google Scholar 

  60. Banerjee, A., Schambach, F., DeJong, C. S., Hammond, S. M., & Reiner, S. L. (2010). Micro-RNA-155 inhibits IFN-gamma signaling in CD4+ T cells. European Journal of Immunology, 40, 225–231.

    Article  PubMed  CAS  Google Scholar 

  61. Yin, Q., McBride, J., Fewell, C., Lacey, M., Wang, X., Lin, Z., et al. (2008). MicroRNA-155 is an Epstein-Barr virus-induced gene that modulates Epstein-Barr virus-regulated gene expression pathways. Journal of Virology, 82, 5295–5306.

    Article  PubMed  CAS  Google Scholar 

  62. Lu, T. X., Munitz, A., & Rothenberg, M. E. (2009). MicroRNA-21 is up-regulated in allergic airway inflammation and regulates IL-12p35 expression. Journal of Immunology, 182, 4994–5002.

    Article  CAS  Google Scholar 

  63. Wu, Z., Lu, H., Sheng, J., & Li, L. (2012). Inductive microRNA-21 impairs anti-mycobacterial responses by targeting IL-12 and Bcl-2. FEBS Letters, 586, 2459–2467.

    Article  PubMed  CAS  Google Scholar 

  64. Liu, F., Yin, L., Zhang, L., Liu, W., Liu, J., Wang, Y., et al. (2012). Trimetazidine improves right ventricular function by increasing miR-21 expression. International Journal of Molecular Medicine, 30, 849–855.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial assistance provided by Faculty of Pharmacy, Cairo University, Cairo, Egypt. We gratefully acknowledge Chest department, Al-Kasr Al-Eni Hospital, Faculty of Medicine, Cairo University.

Conflict of interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nermin Abdel Hamid Sadik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abd-El-Fattah, A.A., Sadik, N.A.H., Shaker, O.G. et al. Differential MicroRNAs Expression in Serum of Patients with Lung Cancer, Pulmonary Tuberculosis, and Pneumonia. Cell Biochem Biophys 67, 875–884 (2013). https://doi.org/10.1007/s12013-013-9575-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-013-9575-y

Keywords

Navigation