Skip to main content

Advertisement

Log in

PDGF: the nuts and bolts of signalling toolbox

  • Review
  • Published:
Tumor Biology

Abstract

PDGF is a growth factor and is extensively involved in multi-dimensional cellular dynamics. It switches on a plethora of molecules other than its classical pathway. It is engaged in various transitions of development; however, if the unleashed potentials lead astray, it brings forth tumourigenesis. Conventionally, it has been assumed that the components of this signalling pathway show fidelity and act with a high degree of autonomy. However, as illustrated by the PDGF signal transduction, reinterpretation of recent data suggests that machinery is often shared between multiple pathways, and other components crosstalk to each other through multiple mechanisms. It is important to note that metastatic cascade is an intricate process that we have only begun to understand in recent years. Many of the early steps of this PDGF cascade are not readily targetable in the clinic. In this review, we will unravel the paradoxes with reference to mitrons and cellular plasticity and discuss how disruption of signalling cascade triggers cellular proliferation phase transition and metastasis. We will also focus on the therapeutic interventions to counteract resultant molecular disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Heldin CH, Eriksson U, Ostman A. New members of the platelet-derived growth factor family of mitogens. Arch Biochem Biophys. 2002;398(2):284–90.

    Article  PubMed  CAS  Google Scholar 

  2. Sun PD, Davies DR. The cystine-knot growth-factor superfamily. Annu Rev Biophys Biomol Struct. 1995;24:269–91.

    Article  PubMed  CAS  Google Scholar 

  3. Li X, Eriksson U. Novel PDGF family members: PDGF-C and PDGF-D. Cytokine Growth Factor Rev. 2003;14(2):91–8.

    Article  PubMed  CAS  Google Scholar 

  4. Heldin CH, Westermark B. Signal transduction by the receptors for platelet-derived growth factor. J Cell Sci. 1990;96(Pt 2):193–6.

    PubMed  CAS  Google Scholar 

  5. Bowen-Pope DF, Hart CE, Seifert RA. Sera and conditioned media contain different isoforms of platelet-derived growth factor (PDGF) which bind to different classes of PDGF receptor. J Biol Chem. 1989;264(5):2502–8.

    PubMed  CAS  Google Scholar 

  6. Gronwald RG, Grant FJ, Haldeman BA, Hart CE, O'Hara PJ, Hagen FS, et al. Cloning and expression of a cDNA coding for the human platelet-derived growth factor receptor: evidence for more than one receptor class. Proc Natl Acad Sci USA. 1988;85(10):3435–9.

    Article  PubMed  CAS  Google Scholar 

  7. Li X, Pontén A, Aase K, Karlsson L, Abramsson A, Uutela M, et al. PDGF-C is a new protease-activated ligand for the PDGF alpha-receptor. Nat Cell Biol. 2000;2(5):302–9.

    Article  PubMed  CAS  Google Scholar 

  8. Bergsten E, Uutela M, Li X, Pietras K, Ostman A, Heldin CH, et al. PDGF-D is a specific, protease-activated ligand for the PDGF beta-receptor. Nat Cell Biol. 2001;3(5):512–6.

    Article  PubMed  CAS  Google Scholar 

  9. Changsirikulchai S, Hudkins KL, Goodpaster TA, Volpone J, Topouzis S, Gilbertson DG, et al. Platelet-derived growth factor-D expression in developing and mature human kidneys. Kidney Int. 2002;62(6):2043–54.

    Article  PubMed  CAS  Google Scholar 

  10. Cochran BH, Reffel AC, Stiles CD. Molecular cloning of gene sequences regulated by platelet-derived growth factor. Cell. 1983;33(3):939–47.

    Article  PubMed  CAS  Google Scholar 

  11. Linzer DI, Nathans D. Growth-related changes in specific mRNAs of cultured mouse cells. Proc Natl Acad Sci USA. 1983;80(14):4271–5.

    Article  PubMed  CAS  Google Scholar 

  12. Almendral JM, Sommer D, Macdonald-Bravo H, Burckhardt J, Perera J, Bravo R. Complexity of the early genetic response to growth factors in mouse fibroblasts. Mol Cell Biol. 1988;8(5):2140–8.

    PubMed  CAS  Google Scholar 

  13. Li L, Blumenthal DK, Terry CM, He Y, Carlson ML, Cheung AK. PDGF-induced proliferation in human arterial and venous smooth muscle cells: molecular basis for differential effects of PDGF isoforms. J Cell Biochem. 2011;112:289–98.

    Article  PubMed  CAS  Google Scholar 

  14. Sato S, Sato Y, Hatakeyama K, Marutsuka K, Yamashita A, Takeshima H, et al. Quantitative analysis of vessels with smooth muscle layer in astrocytic tumors: correlation with histological grade and prognostic significance. Histol Histopathol. 2011;26:497–504.

    PubMed  Google Scholar 

  15. Ishigaki T, Imanaka-Yoshida K, Shimojo N, Matsushima S, Taki W, Yoshida T. Tenascin-C enhances crosstalk signaling of integrin αvβ3/PDGFR-β complex by SRC recruitment promoting PDGF-induced proliferation and migration in smooth muscle cells. J Cell Physiol. 2011 (in press)

  16. Tsaousi A, Williams H, Lyon CA, Taylor V, Swain A, Johnson JL, et al. Wnt4/β-catenin signaling induces VSMC proliferation and is associated with intimal thickening. Circ Res. 2011;108:427–36.

    Article  PubMed  CAS  Google Scholar 

  17. Sklepkiewicz P, Schermuly RT, Tian X, Ghofrani HA, Weissmann N, Sedding D, et al. Glycogen synthase kinase 3beta contributes to proliferation of arterial smooth muscle cells in pulmonary hypertension. PLoS One. 2011;6:e18883.

    Article  PubMed  CAS  Google Scholar 

  18. Keramati AR, Singh R, Lin A, Faramarzi S, Ye ZJ, Mane S, et al. Wild-type LRP6 inhibits, whereas atherosclerosis-linked LRP6R611C increases PDGF-dependent vascular smooth muscle cell proliferation. Proc Natl Acad Sci USA. 2011;108:1914–8.

    Article  PubMed  CAS  Google Scholar 

  19. Mendelson K, Swendeman S, Saftig P, Blobel CP. Stimulation of platelet-derived growth factor receptor beta (PDGFRbeta) activates ADAM17 and promotes metalloproteinase-dependent cross-talk between the PDGFRbeta and epidermal growth factor receptor (EGFR) signaling pathways. J Biol Chem. 2010;285:25024–32.

    Article  PubMed  CAS  Google Scholar 

  20. Chen PY, Simons M, Friesel R. FRS2 via fibroblast growth factor receptor 1 is required for platelet-derived growth factor receptor beta-mediated regulation of vascular smooth muscle marker gene expression. J Biol Chem. 2009;284(23):15980–92.

    Article  PubMed  CAS  Google Scholar 

  21. Pellet-Many C, Frankel P, Evans IM, Herzog B, Jünemann-Ramírez M, Zachary IC. Neuropilin-1 mediates PDGF stimulation of vascular smooth muscle cell migration and signalling via p130Cas. Biochem J. 2011;435:609–18.

    Article  PubMed  CAS  Google Scholar 

  22. Miraoui H, Ringe J, Häupl T, Marie PJ. Increased EFG- and PDGFalpha-receptor signaling by mutant FGF-receptor 2 contributes to osteoblast dysfunction in Apert craniosynostosis. Hum Mol Genet. 2010;19:1678–89.

    Article  PubMed  CAS  Google Scholar 

  23. Sápi Z, Füle T, Hajdu M, Matolcsy A, Moskovszky L, Márk A, et al. The activated targets of mTOR signaling pathway are characteristic for PDGFRA mutant and wild-type rather than KIT mutant GISTs. Diagn Mol Pathol. 2011;20:22–33.

    Article  PubMed  CAS  Google Scholar 

  24. Pérez J, Torres RA, Rocic P, Cismowski MJ, Weber DS, Darley-Usmar VM, et al. PYK2 signaling is required for PDGF-dependent vascular smooth muscle cell proliferation. Am J Physiol Cell Physiol. 2011;301:C242–51.

    Article  PubMed  CAS  Google Scholar 

  25. Zhao Y, Biswas SK, McNulty PH, Kozak M, Jun JY, Segar L. PDGF-induced vascular smooth muscle cell proliferation is associated with dysregulation of insulin receptor substrates. Am J Physiol Cell Physiol. 2011;300:C1375–85.

    Article  PubMed  CAS  Google Scholar 

  26. Ning Y, Sun Q, Dong Y, Xu W, Zhang W, Huang H, et al. Slit2-N inhibits PDGF-induced migration in rat airway smooth muscle cells: WASP and Arp2/3 involved. Toxicology. 2011;283:32–40.

    Article  PubMed  CAS  Google Scholar 

  27. Ucuzian AA, Brewster LP, East AT, Pang Y, Gassman AA, Greisler HP. Characterization of the chemotactic and mitogenic response of SMCs to PDGF-BB and FGF-2 in fibrin hydrogels. J Biomed Mater Res A. 2010;94:988–96.

    PubMed  Google Scholar 

  28. Martino MM, Hubbell JA. The 12th-14th type III repeats of fibronectin function as a highly promiscuous growth factor-binding domain. FASEB J. 2010;24:4711–21.

    Article  PubMed  CAS  Google Scholar 

  29. Foehr ED, Tatavos A, Tanabe E, Raffioni S, Goetz S, Dimarco E, et al. Discoidin domain receptor 1 (DDR1) signaling in PC12 cells: activation of juxtamembrane domains in PDGFR/DDR/TrkA chimeric receptors. FASEB J. 2000;14:973–81.

    PubMed  CAS  Google Scholar 

  30. Toffalini F, Kallin A, Vandenberghe P, Pierre P, Michaux L, Cools J, et al. The fusion proteins TEL-PDGFRbeta and FIP1L1-PDGFRalpha escape ubiquitination and degradation. Haematologica. 2009;94:1085–93.

    Article  PubMed  CAS  Google Scholar 

  31. Gueller S, Hehn S, Nowak V, Gery S, Serve H, Brandts CH, et al. Adaptor protein Lnk binds to PDGF receptor and inhibits PDGF-dependent signaling. Exp Hematol. 2011;39:591–600.

    Article  PubMed  CAS  Google Scholar 

  32. Medves S, Noel LA, Montano-Almendras CP, Albu RI, Schoemans H, Constantinescu SN, Demoulin JB. Multiple oligomerization domains of KANK1-PDGFRB are required for JAK2-independent hematopoietic cell proliferation and signaling via STAT5 and ERK. Haematologica. 2011 (in press) AOP 32

  33. Cao Y, Cao R, Hedlund EM. R Regulation of tumor angiogenesis and metastasis by FGF and PDGF signaling pathways. J Mol Med. 2008;86(7):785–9.

    Article  PubMed  CAS  Google Scholar 

  34. Cao R, Björndahl MA, Religa P, Clasper S, Garvin S, Galter D, et al. PDGF-BB induces intratumoral lymphangiogenesis and promotes lymphatic metastasis. Cancer Cell. 2004;6(4):333–45.

    Article  PubMed  CAS  Google Scholar 

  35. Jechlinger M, Sommer A, Moriggl R, Seither P, Kraut N, Capodiecci P, et al. Autocrine PDGFR signaling promotes mammary cancer metastasis. J Clin Invest. 2006;116(6):1561–70.

    Article  PubMed  CAS  Google Scholar 

  36. Cimpean AM, Ceauşu R, Encică S, Gaje PN, Ribatti D, Raica M. Platelet-derived growth factor and platelet-derived growth factor receptor-α expression in the normal human thymus and thymoma. Int J Exp Pathol. 2011 (in press) AOP

  37. Suzuki S, Dobashi Y, Hatakeyama Y, Tajiri R, Fujimura T, Heldin CH, et al. Clinicopathological significance of platelet-derived growth factor (PDGF)-B and vascular endothelial growth factor-A expression, PDGF receptor-β phosphorylation, and microvessel density in gastric cancer. BMC Cancer. 2010;10:659.

    Article  PubMed  CAS  Google Scholar 

  38. Chaoran Z, Zhirong L, Gezhi X. Combination of vascular endothelial growth factor receptor/platelet-derived growth factor receptor inhibition markedly improves the antiangiogenic efficacy for advanced stage mouse corneal neovascularization. Graefes Arch Clin Exp Ophthalmol. 2011. (in press) AOP

  39. Ahmad A, Wang Z, Kong D, Ali R, Ali S, Banerjee S, et al. Platelet-derived growth factor-D contributes to aggressiveness of breast cancer cells by up-regulating Notch and NF-κB signaling pathways. Breast Cancer Res Treat. 2011;126(1):15–25.

    Article  PubMed  CAS  Google Scholar 

  40. Wang Z, Kong D, Banerjee S, Li Y, Adsay NV, Abbruzzese J, et al. Down-regulation of platelet-derived growth factor-D inhibits cell growth and angiogenesis through inactivation of Notch-1 and nuclear factor-kappaB signaling. Cancer Res. 2007;67(23):11377–85.

    Article  PubMed  CAS  Google Scholar 

  41. Kang DW, Min do S. Platelet derived growth factor increases phospholipase D1 but not phospholipase D2 expression via NFkappaB signaling pathway and enhances invasion of breast cancer cells. Cancer Lett. 2010;294(1):125–33.

    Article  PubMed  CAS  Google Scholar 

  42. Rykala J, Przybylowska K, Majsterek I, Pasz-Walczak G, Sygut A, Dziki A, Kruk-Jeromin J. Angiogenesis markers quantification in breast cancer and their correlation with clinicopathological prognostic variables. Pathol Oncol Res. 2011 (in press).

  43. Liu J, Liao S, Huang Y, Samuel R, Shi T, Naxerova K, et al. PDGF-D improves drug delivery and efficacy via vascular normalization, but promotes lymphatic metastasis by activating CXCR4 in breast cancer. Clin Cancer Res. 2011;17:3638–48.

    Article  PubMed  CAS  Google Scholar 

  44. Gehmert S, Gehmert S, Prantl L, Vykoukal J, Alt E, Song YH. Breast cancer cells attract the migration of adipose tissue-derived stem cells via the PDGF-BB/PDGFR-beta signaling pathway. Biochem Biophys Res Commun. 2010;398:601–5.

    Article  PubMed  CAS  Google Scholar 

  45. Maurer B, Stanczyk J, Jüngel A, Akhmetshina A, Trenkmann M, Brock M, et al. MicroRNA-29, a key regulator of collagen expression in systemic sclerosis. Arthritis Rheum. 2010;62:1733–43.

    Article  PubMed  CAS  Google Scholar 

  46. Quintavalle M, Elia L, Condorelli G, Courtneidge SA. MicroRNA control of podosome formation in vascular smooth muscle cells in vivo and in vitro. J Cell Biol. 2010;189:13–22.

    Article  PubMed  CAS  Google Scholar 

  47. Dugas JC, Cuellar TL, Scholze A, Ason B, Ibrahim A, Emery B, et al. Dicer1 and miR-219 are required for normal oligodendrocyte differentiation and myelination. Neuron. 2010;65:597–611.

    Article  PubMed  CAS  Google Scholar 

  48. Zhang J, Chintalgattu V, Shih T, Ai D, Xia Y, Khakoo AY. MicroRNA-9 is an activation-induced regulator of PDGFR-beta expression in cardiomyocytes. J Mol Cell Cardiol. 2011 (in press) AOP.

  49. Würdinger T, Tannous BA, Saydam O, Skog J, Grau S, Soutschek J, et al. miR-296 regulates growth factor receptor overexpression in angiogenic endothelial cells. Cancer Cell. 2008;14:382–93.

    Article  PubMed  CAS  Google Scholar 

  50. Eberhart JK, He X, Swartz ME, Yan YL, Song H, Boling TC, et al. MicroRNA Mirn140 modulates Pdgf signaling during palatogenesis. Nat Genet. 2008;40:290–8.

    Article  PubMed  CAS  Google Scholar 

  51. Goff LA, Boucher S, Ricupero CL, Fenstermacher S, Swerdel M, Chase LG, et al. Differentiating human multipotent mesenchymal stromal cells regulate microRNAs: prediction of microRNA regulation by PDGF during osteogenesis. Exp Hematol. 2008;36(10):1354–69.

    Article  PubMed  CAS  Google Scholar 

  52. Chan MC, Hilyard AC, Wu C, Davis BN, Hill NS, Lal A, et al. Molecular basis for antagonism between PDGF and the TGFbeta family of signalling pathways by control of miR-24 expression. EMBO J. 2010;29(3):559–73.

    Article  PubMed  CAS  Google Scholar 

  53. Kong D, Li Y, Wang Z, Banerjee S, Ahmad A, Kim HR, et al. miR-200 regulates PDGF-D-mediated epithelial-mesenchymal transition, adhesion, and invasion of prostate cancer cells. Stem Cells. 2009;27(8):1712–21.

    Article  PubMed  CAS  Google Scholar 

  54. Davis BN, Hilyard AC, Nguyen PH, Lagna G, Hata A. Induction of microRNA-221 by platelet-derived growth factor signaling is critical for modulation of vascular smooth muscle phenotype. J Biol Chem. 2009;284(6):3728–38.

    Article  PubMed  CAS  Google Scholar 

  55. Muhl L, Nykjaer A, Wygrecka M, Monard D, Preissner KT, Kanse SM. Inhibition of PDGF-BB by Factor VII-activating protease (FSAP) is neutralized by protease nexin-1, and the FSAP-inhibitor complexes are internalized via LRP. Biochem J. 2007;404(2):191–6.

    Article  PubMed  CAS  Google Scholar 

  56. Takayama Y, May P, Anderson RG, Herz J. Low density lipoprotein receptor-related protein 1 (LRP1) controls endocytosis and c-CBL-mediated ubiquitination of the platelet-derived growth factor receptor beta (PDGFR beta). J Biol Chem. 2005;280(18):18504–10.

    Article  PubMed  CAS  Google Scholar 

  57. Zhou L, Takayama Y, Boucher P, Tallquist MD, Herz J. LRP1 regulates architecture of the vascular wall by controlling PDGFRbeta-dependent phosphatidylinositol 3-kinase activation. PLoS One. 2009;4(9):e6922.

    Article  PubMed  CAS  Google Scholar 

  58. Muratoglu SC, Mikhailenko I, Newton C, Migliorini M, Strickland DK. Low density lipoprotein receptor-related protein 1 (LRP1) forms a signaling complex with platelet-derived growth factor receptor-beta in endosomes and regulates activation of the MAPK pathway. J Biol Chem. 2010;285(19):14308–17.

    Article  PubMed  CAS  Google Scholar 

  59. Boucher P, Li WP, Matz RL, Takayama Y, Auwerx J, Anderson RG, et al. LRP1 functions as an atheroprotective integrator of TGFbeta and PDFG signals in the vascular wall: implications for Marfan syndrome. PLoS One. 2007;2(5):e448.

    Article  PubMed  CAS  Google Scholar 

  60. Hellberg C, Schmees C, Karlsson S, Ahgren A, Heldin CH. Activation of protein kinase C alpha is necessary for sorting the PDGF beta-receptor to Rab4a-dependent recycling. Mol Biol Cell. 2009;20(12):2856–63.

    Article  PubMed  CAS  Google Scholar 

  61. Chiarugi P, Cirri P, Taddei ML, Giannoni E, Fiaschi T, Buricchi F, et al. Insight into the role of low molecular weight phosphotyrosine phosphatase (LMW-PTP) on platelet-derived growth factor receptor (PDGF-r) signaling. LMW-PTP controls PDGF-r kinase activity through TYR-857 dephosphorylation. J Biol Chem. 2002;277(40):37331–8.

    Article  PubMed  CAS  Google Scholar 

  62. Kappert K, Paulsson J, Sparwel J, Leppänen O, Hellberg C, Ostman A, et al. Dynamic changes in the expression of DEP-1 and other PDGF receptor-antagonizing PTPs during onset and termination of neointima formation. FASEB J. 2007;21:523–34.

    Article  PubMed  CAS  Google Scholar 

  63. Karlsson S, Kowanetz K, Sandin A, Persson C, Ostman A, Heldin CH, et al. Loss of T-cell protein tyrosine phosphatase induces recycling of the platelet-derived growth factor (PDGF) beta-receptor but not the PDGF alpha-receptor. Mol Biol Cell. 2006;17:4846–55.

    Article  PubMed  CAS  Google Scholar 

  64. Kanda M, Ihara Y, Murata H, Urata Y, Kono T, Yodoi J, et al. Glutaredoxin modulates platelet-derived growth factor-dependent cell signaling by regulating the redox status of low molecular weight protein-tyrosine phosphatase. J Biol Chem. 2006;281:28518–28.

    Article  PubMed  CAS  Google Scholar 

  65. Freyhaus H, Dagnell M, Leuchs M, Vantler M, Berghausen EM, Caglayan E, et al. Hypoxia enhances platelet-derived growth factor signaling in the pulmonary vasculature by down-regulation of protein tyrosine phosphatases. Am J Respir Crit Care Med. 2011;183:1092–102.

    Article  PubMed  CAS  Google Scholar 

  66. Conrad M, Sandin A, Förster H, Seiler A, Frijhoff J, Dagnell M, et al. Hooft van Huijsduijnen R, Aspenström P, Böhmer F, Ostman A. 12/15-lipoxygenase-derived lipid peroxides control receptor tyrosine kinase signaling through oxidation of protein tyrosine phosphatases. Proc Natl Acad Sci USA. 2010;107:15774–9.

    Article  PubMed  CAS  Google Scholar 

  67. Boivin B, Tonks NK. Analysis of the redox regulation of protein tyrosine phosphatase superfamily members utilizing a cysteinyl-labeling assay. Methods Enzymol. 2010;474:35–50.

    Article  PubMed  CAS  Google Scholar 

  68. Sandin A, Dagnell M, Gonon A, Pernow J, Stangl V, Aspenström P, et al. Hypoxia followed by re-oxygenation induces oxidation of tyrosine phosphatases. Cell Signal. 2011;23:820–6.

    Article  PubMed  CAS  Google Scholar 

  69. Juarez JC, Manuia M, Burnett ME, Betancourt O, Boivin B, Shaw DE, et al. Superoxide dismutase 1 (SOD1) is essential for H2O2-mediated oxidation and inactivation of phosphatases in growth factor signaling. Proc Natl Acad Sci USA. 2008;105:7147–52.

    Article  PubMed  CAS  Google Scholar 

  70. Cortesio CL, Perrin BJ, Bennin DA, Huttenlocher A. Actin-binding protein-1 interacts with WASp-interacting protein to regulate growth factor-induced dorsal ruffle formation. Mol Biol Cell. 2010;21(1):186–97.

    Article  PubMed  CAS  Google Scholar 

  71. Abella JV, Vaillancourt R, Frigault MM, Ponzo MG, Zuo D, Sangwan V, et al. The Gab1 scaffold regulates RTK-dependent dorsal ruffle formation through the adaptor Nck. J Cell Sci. 2010;123:1306–19.

    Article  PubMed  CAS  Google Scholar 

  72. Campa F, Machuy N, Klein A, Rudel T. A new interaction between Abi-1 and betaPIX involved in PDGF-activated actin cytoskeleton reorganisation. Cell Res. 2006;16:759–70.

    Article  PubMed  CAS  Google Scholar 

  73. Veracini L, Franco M, Boureux A, Simon V, Roche S, Benistant C. Two distinct pools of Src family tyrosine kinases regulate PDGF-induced DNA synthesis and actin dorsal ruffles. J Cell Sci. 2006;119:2921–34.

    Article  PubMed  CAS  Google Scholar 

  74. Goicoechea S, Arneman D, Disanza A, Garcia-Mata R, Scita G, Otey CA. Palladin binds to Eps8 and enhances the formation of dorsal ruffles and podosomes in vascular smooth muscle cells. J Cell Sci. 2006;119:3316–24.

    Article  PubMed  CAS  Google Scholar 

  75. Toguchi M, Richnau N, Ruusala A, Aspenström P. Members of the CIP4 family of proteins participate in the regulation of platelet-derived growth factor receptor-beta-dependent actin reorganization and migration. Biol Cell. 2010;102(4):215–30.

    Article  PubMed  CAS  Google Scholar 

  76. Berrou E, Bryckaert M. Recruitment of protein phosphatase 2A to dorsal ruffles by platelet-derived growth factor in smooth muscle cells: dephosphorylation of Hsp27. Exp Cell Res. 2009;315:836–48.

    Article  PubMed  CAS  Google Scholar 

  77. Nagano K, Bornhauser BC, Warnasuriya G, Entwistle A, Cramer R, Lindholm D, et al. PDGF regulates the actin cytoskeleton through hnRNP-K-mediated activation of the ubiquitin E3-ligase MIR. EMBO J. 2006;25(9):1871–82.

    Article  PubMed  CAS  Google Scholar 

  78. Uribe DJ, Guo K, Shin YJ, Sun D. Heterogeneous nuclear ribonucleoprotein K and nucleolin as transcriptional activators of the vascular endothelial growth factor promoter through interaction with secondary DNA structures. Biochemistry. 2011;50:3796–806.

    Article  PubMed  CAS  Google Scholar 

  79. Mikula M, Bomsztyk K. Direct recruitment of ERK cascade components to inducible genes is regulated by heterogeneous nuclear ribonucleoprotein (hnRNP) K. J Biol Chem. 2011;286:9763–75.

    Article  PubMed  CAS  Google Scholar 

  80. Chen K, Albano A, Ho A, Keaney Jr JF. Activation of p53 by oxidative stress involves platelet-derived growth factor-beta receptor-mediated ataxia telangiectasia mutated (ATM) kinase activation. J Biol Chem. 2003;278:39527–33.

    Article  PubMed  CAS  Google Scholar 

  81. Kim TS, Kawaguchi M, Suzuki M, Jung CG, Asai K, Shibamoto Y, et al. The ZFHX3 (ATBF1) transcription factor induces PDGFRB, which activates ATM in the cytoplasm to protect cerebellar neurons from oxidative stress. Dis Model Mech. 2010;3:752–62.

    Article  PubMed  CAS  Google Scholar 

  82. Ikushima H, Komuro A, Isogaya K, Shinozaki M, Hellman U, Miyazawa K, et al. An Id-like molecule, HHM, is a synexpression group-restricted regulator of TGF-beta signalling. EMBO J. 2008;27(22):2955–65.

    Article  PubMed  CAS  Google Scholar 

  83. Patel P, West-Mays J, Kolb M, Rodrigues JC, Hoff CM, Margetts PJ. Platelet derived growth factor B and epithelial mesenchymal transition of peritoneal mesothelial cells. Matrix Biol. 2010;29(2):97–106.

    Article  PubMed  CAS  Google Scholar 

  84. Cheng X, Yang G, Schmeler KM, Coleman RL, Tu X, Liu J, et al. Recurrence patterns and prognosis of endometrial stromal sarcoma and the potential of tyrosine kinase-inhibiting therapy. Gynecol Oncol. 2011;121:323–7.

    Article  PubMed  CAS  Google Scholar 

  85. Pitter KL, Galbán CJ, Galbán S, Tehrani OS, Li F, Charles N, et al. Perifosine and CCI 779 co-operate to induce cell death and decrease proliferation in PTEN-intact and PTEN-deficient PDGF-driven murine glioblastoma. PLoS One. 2011;6:e14545. AOP.

    Article  PubMed  CAS  Google Scholar 

  86. Dong Y, Jia L, Wang X, Tan X, Xu J, Deng Z, et al. Selective inhibition of PDGFR by imatinib elicits the sustained activation of ERK and downstream receptor signaling in malignant glioma cells. Int J Oncol. 2011;38:555–69.

    PubMed  CAS  Google Scholar 

  87. Xu XL, Huang YJ, Wang YQ, Chen XF, Zhang W. 2,3,4′,5-Tetrahydroxystilbene-2-O-β-d-glucoside inhibits platelet-derived growth factor-induced proliferation of vascular smooth muscle cells by regulating the cell cycle. Clin Exp Pharmacol Physiol. 2011;38:307–13.

    Article  PubMed  CAS  Google Scholar 

  88. Kim TJ, Yun YP. Antiproliferative activity of NQ304, a synthetic 1,4-naphthoquinone, is mediated via the suppressions of the PI3K/Akt and ERK1/2 signaling pathways in PDGF-BB-stimulated vascular smooth muscle cells. Vascul Pharmacol. 2007;46:43–51.

    Article  PubMed  CAS  Google Scholar 

  89. Kim TJ, Han HJ, Kim YJ, Jung JC, Yu JY, Lee JJ, et al. Inhibitory effects of BST406, a newly synthesized benzylideneacetophenone derivative, on abnormal vascular smooth muscle cell proliferation. Biol Pharm Bull. 2010;33:900–4.

    Article  PubMed  CAS  Google Scholar 

  90. Schultz JD, Rotunno S, Riedel F, Anders C, Erben P, Hofheinz RD, et al. Synergistic effects of imatinib and carboplatin on VEGF, PDGF and PDGF-Rα/ß expression in squamous cell carcinoma of the head and neck in vitro. Int J Oncol. 2011;38:1001–12.

    Article  PubMed  CAS  Google Scholar 

  91. Kłosowska-Wardęga A, Hasumi Y, Ahgren A, Heldin CH, Hellberg C. Combination therapy using imatinib and vatalanib improves the therapeutic efficiency of paclitaxel towards a mouse melanoma tumor. Melanoma Res. 2011 (in press) AOP.

  92. Park ES, Yoo JM, Lim Y, Tudev M, Yoo HS, Hong JT, et al. Inhibitory effects of docetaxel on platelet-derived growth factor (PDGF)-BB-induced proliferation of vascular smooth muscle cells through blocking PDGF-receptor β phosphorylation. J Pharmacol Sci. 2011;116:204–13.

    Article  PubMed  CAS  Google Scholar 

  93. Mathew P, Thall PF, Wen S, Bucana C, Jones D, Horne E, et al. Dynamic change in phosphorylated platelet-derived growth factor receptor in peripheral blood leukocytes following docetaxel therapy predicts progression-free and overall survival in prostate cancer. Br J Cancer. 2008;99:1426–32.

    Article  PubMed  CAS  Google Scholar 

  94. Lu C, Shahzad MM, Moreno-Smith M, Lin YG, Jennings NB, Allen JK, et al. Targeting pericytes with a PDGF-B aptamer in human ovarian carcinoma models. Cancer Biol Ther. 2010;9:176–82.

    Article  PubMed  CAS  Google Scholar 

  95. Prakash J, de Jong E, Post E, Gouw AS, Beljaars L, Poelstra K. A novel approach to deliver anticancer drugs to key cell types in tumors using a PDGF receptor-binding cyclic peptide containing carrier. J Control Release. 2010;145:91–101.

    Article  PubMed  CAS  Google Scholar 

  96. Tailor TD, Hanna G, Yarmolenko PS, Dreher MR, Betof AS, Nixon AB, et al. Effect of pazopanib on tumor microenvironment and liposome delivery. Mol Cancer Ther. 2010;9:1798–808.

    Article  PubMed  CAS  Google Scholar 

  97. Hutson TE, Davis ID, Machiels JP, De Souza PL, Rottey S, Hong BF, et al. Efficacy and safety of pazopanib in patients with metastatic renal cell carcinoma. J Clin Oncol. 2010;28:475–80.

    Article  PubMed  CAS  Google Scholar 

  98. Dong LH, Wen JK, Miao SB, Jia Z, Hu HJ, Sun RH, et al. Baicalin inhibits PDGF-BB-stimulated vascular smooth muscle cell proliferation through suppressing PDGFRβ-ERK signaling and increase in p27 accumulation and prevents injury-induced neointimal hyperplasia. Cell Res. 2010;20:1252–62.

    Article  PubMed  CAS  Google Scholar 

  99. Brave SR, Ratcliffe K, Wilson Z, James NH, Ashton S, Wainwright A, et al. Assessing the activity of cediranib, a VEGFR-2/3 tyrosine kinase inhibitor, against VEGFR-1 and members of the structurally related PDGFR family. Mol Cancer Ther. 2011;10:861–73.

    Article  PubMed  CAS  Google Scholar 

  100. Lindborg M, Cortez E, Höidén-Guthenberg I, Gunneriusson E, von Hage E, Syud F, et al. Engineered high-affinity affibody molecules targeting platelet-derived growth factor receptor β in vivo. J Mol Biol. 2011;407:298–315.

    Article  PubMed  CAS  Google Scholar 

  101. Mabry R, Gilbertson DG, Frank A, Vu T, Ardourel D, Ostrander C, et al. A dual-targeting PDGFRbeta/VEGF-A molecule assembled from stable antibody fragments demonstrates anti-angiogenic activity in vitro and in vivo. MAbs. 2010;2:20–34.

    Article  PubMed  Google Scholar 

  102. Lin J, Chen A. Activation of peroxisome proliferator-activated receptor-gamma by curcumin blocks the signaling pathways for PDGF and EGF in hepatic stellate cells. Lab Invest. 2008;88:529–40.

    Article  PubMed  CAS  Google Scholar 

  103. Zhao ZD, Huang ZS. Study on effects of curcumin on expressions of PDGF-BB, PDGFRbeta and ERK1 of HSC. Zhong Yao Cai. 2009;32:732–5.

    PubMed  CAS  Google Scholar 

  104. Oak MH, Bedoui JE, Madeira SV, Chalupsky K, Schini-Kerth VB. Delphinidin and cyanidin inhibit PDGF(AB)-induced VEGF release in vascular smooth muscle cells by preventing activation of p38 MAPK and JNK. Br J Pharmacol. 2006;149:283–90.

    Article  PubMed  CAS  Google Scholar 

  105. Venkatesan B, Ghosh-Choudhury N, Das F, Mahimainathan L, Kamat A, Kasinath BS, et al. Resveratrol inhibits PDGF receptor mitogenic signaling in mesangial cells: role of PTP1B. FASEB J. 2008;22:3469–82.

    Article  PubMed  CAS  Google Scholar 

  106. Choi KH, Kim JE, Song NR, Son JE, Hwang MK, Byun S, et al. Phosphoinositide 3-kinase is a novel target of piceatannol for inhibiting PDGF-BB-induced proliferation and migration in human aortic smooth muscle cells. Cardiovasc Res. 2010;85:836–44.

    Article  PubMed  CAS  Google Scholar 

  107. Park ES, Lim Y, Hong JT, Yoo HS, Lee CK, Pyo MY, et al. Pterostilbene, a natural dimethylated analog of resveratrol, inhibits rat aortic vascular smooth muscle cell proliferation by blocking Akt-dependent pathway. Vascul Pharmacol. 2010;53:61–7.

    Article  PubMed  CAS  Google Scholar 

  108. Chen CP, Hung CF, Lee SC, Lo HM, Wu PH, Wu WB. Lycopene binding compromised PDGF-AA/-AB signaling and migration in smooth muscle cells and fibroblasts: prediction of the possible lycopene binding site within PDGF. Naunyn Schmiedebergs Arch Pharmacol. 2010;381:401–14.

    Article  PubMed  CAS  Google Scholar 

  109. Chan CM, Fang JY, Lin HH, Yang CY, Hung CF. Lycopene inhibits PDGF-BB-induced retinal pigment epithelial cell migration by suppression of PI3K/Akt and MAPK pathways. Biochem Biophys Res Commun. 2009;388:172–6.

    Article  PubMed  CAS  Google Scholar 

  110. Chiang HS, Wu WB, Fang JY, Chen DF, Chen BH, Huang CC, et al. Lycopene inhibits PDGF-BB-induced signaling and migration in human dermal fibroblasts through interaction with PDGF-BB. Life Sci. 2007;81:1509–17.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ammad Ahmad Farooqi or Shahzad Bhatti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farooqi, A.A., Waseem, S., Riaz, A.M. et al. PDGF: the nuts and bolts of signalling toolbox. Tumor Biol. 32, 1057–1070 (2011). https://doi.org/10.1007/s13277-011-0212-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-011-0212-3

Keywords

Navigation