Skip to main content

Advertisement

Log in

R Regulation of tumor angiogenesis and metastasis by FGF and PDGF signaling pathways

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

In a fast-growing malignant tissue, tumor blood vessels are exposed to multiple growth factors and cytokines. Although the role of individual factors and their signaling pathways in regulation of tumor neovascularization is relatively well-studied, little is known about complex interactions between these factors and their cooperative effects in promoting tumor angiogenesis and metastasis. Our recent studies show that quiescent vascular endothelial cells usually remaining silence to platelet-derived growth factor (PDGF)-BB stimulation acquire their hyperresponsiveness after stimulation with fibroblast growth factor (FGF)-2, which transcriptionally switches on PDGF receptor expression in the activated endothelial cells. Interestingly, PDGF-BB also transduces positive feedback signals to the FGF-2 signaling system by amplifying its receptor expression in vascular mural cells. These uncoordinated reciprocal interactions in the tumor environment lead to the formation of disorganized and primitive vasculatures that facilitate tumor growth and metastasis in mice. These findings provide an example of complex interaction between tumor angiogenic factors. Thus, therapeutic development of antiangiogenic agents for the treatment of cancer should be aimed to block multiple angiogenic signaling pathways and their interactive loops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285:1182–1186

    PubMed  CAS  Google Scholar 

  2. Cao Y (2005) Opinion: emerging mechanisms of tumour lymphangiogenesis and lymphatic metastasis. Nat Rev Cancer 5:735–743

    Article  PubMed  CAS  Google Scholar 

  3. Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407:249–257

    Article  PubMed  CAS  Google Scholar 

  4. Ferrara N, Kerbel RS (2005) Angiogenesis as a therapeutic target. Nature 438:967–974

    Article  PubMed  CAS  Google Scholar 

  5. Balkwill F, Coussens LM (2004) Cancer: an inflammatory link. Nature 431:405–406

    Article  PubMed  CAS  Google Scholar 

  6. Coussens LM, Tinkle CL, Hanahan D, Werb Z (2000) MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell 103:481–490

    Article  PubMed  CAS  Google Scholar 

  7. Zhou Z, Apte SS, Soininen R, Cao R, Baaklini GY, Rauser RW, Wang J, Cao Y, Tryggvason K (2000) Impaired endochondral ossification and angiogenesis in mice deficient in membrane-type matrix metalloproteinase I. Proc Natl Acad Sci U S A 97:4052–4057

    Article  PubMed  CAS  Google Scholar 

  8. Bergers G, Brekken R, McMahon G, Vu TH, Itoh T, Tamaki K, Tanzawa K, Thorpe P, Itohara S, Werb Z et al (2000) Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol 2:737–744

    Article  PubMed  CAS  Google Scholar 

  9. Bissell MJ, Radisky D (2001) Putting tumours in context. Nat Rev Cancer 1:46–54

    Article  PubMed  CAS  Google Scholar 

  10. Mueller MM, Fusenig NE (2004) Friends or foes—bipolar effects of the tumour stroma in cancer. Nat Rev Cancer 4:839–849

    Article  PubMed  CAS  Google Scholar 

  11. Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307:58–62

    Article  PubMed  CAS  Google Scholar 

  12. Holmquist-Mengelbier L, Fredlund E, Lofstedt T, Noguera R, Navarro S, Nilsson H, Pietras A, Vallon-Christersson J, Borg A, Gradin K et al (2006) Recruitment of HIF-1alpha and HIF-2alpha to common target genes is differentially regulated in neuroblastoma: HIF-2alpha promotes an aggressive phenotype. Cancer Cell 10:413–423

    Article  PubMed  CAS  Google Scholar 

  13. Makino Y, Cao R, Svensson K, Bertilsson G, Asman M, Tanaka H, Cao Y, Berkenstam A, Poellinger L (2001) Inhibitory PAS domain protein is a negative regulator of hypoxia-inducible gene expression. Nature 414:550–554

    Article  PubMed  CAS  Google Scholar 

  14. Tang N, Wang L, Esko J, Giordano FJ, Huang Y, Gerber HP, Ferrara N, Johnson RS (2004) Loss of HIF-1alpha in endothelial cells disrupts a hypoxia-driven VEGF autocrine loop necessary for tumorigenesis. Cancer Cell 6:485–495

    Article  PubMed  CAS  Google Scholar 

  15. Cao R, Brakenhielm E, Pawliuk R, Wariaro D, Post MJ, Wahlberg E, Leboulch P, Cao Y (2003) Angiogenic synergism, vascular stability and improvement of hind-limb ischemia by a combination of PDGF-BB and FGF-2. Nat Med 9:604–613

    Article  PubMed  CAS  Google Scholar 

  16. Cao R, Eriksson A, Kubo H, Alitalo K, Cao Y, Thyberg J (2004) Comparative evaluation of FGF-2-, VEGF-A-, and VEGF-C-induced angiogenesis, lymphangiogenesis, vascular fenestrations, and permeability. Circ Res 94:664–670

    Article  PubMed  CAS  Google Scholar 

  17. Lu H, Xu X, Zhang M, Cao R, Brakenhielm E, Li C, Lin H, Yao G, Sun H, Qi L et al (2007) Combinatorial protein therapy of angiogenic and arteriogenic factors remarkably improves collaterogenesis and cardiac function in pigs. Proc Natl Acad Sci U S A 104:12140–12145

    Article  PubMed  CAS  Google Scholar 

  18. Nissen LJ, Cao R, Hedlund EM, Wang Z, Zhao X, Wetterskog D, Funa K, Brakenhielm E, Cao Y (2007) Angiogenic factors FGF2 and PDGF-BB synergistically promote murine tumor neovascularization and metastasis. J Clin Invest 117:2766–2777

    Article  PubMed  CAS  Google Scholar 

  19. Lindahl P, Johansson BR, Leveen P, Betsholtz C (1997) Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science 277:242–245

    Article  PubMed  CAS  Google Scholar 

  20. Soriano P (1997) The PDGF alpha receptor is required for neural crest cell development and for normal patterning of the somites. Development 124:2691–2700

    PubMed  CAS  Google Scholar 

  21. McCarty MF, Somcio RJ, Stoeltzing O, Wey J, Fan F, Liu W, Bucana C, Ellis LM (2007) Overexpression of PDGF-BB decreases colorectal and pancreatic cancer growth by increasing tumor pericyte content. J Clin Invest 117:2114–2122

    Article  PubMed  CAS  Google Scholar 

  22. Sennino B, Falcon BL, McCauley D, Le T, McCauley T, Kurz JC, Haskell A, Epstein DM, McDonald DM (2007) Sequential loss of tumor vessel pericytes and endothelial cells after inhibition of platelet-derived growth factor B by selective aptamer AX102. Cancer Res 67:7358–7367

    Article  PubMed  CAS  Google Scholar 

  23. Funa K, Papanicolaou V, Juhlin C, Rastad J, Akerstrom G, Heldin CH, Oberg K (1990) Expression of platelet-derived growth factor beta-receptors on stromal tissue cells in human carcinoid tumors. Cancer Res 50:748–753

    PubMed  CAS  Google Scholar 

  24. Nister M, Enblad P, Backstrom G, Soderman T, Persson L, Heldin CH, Westermark B (1994) Platelet-derived growth factor (PDGF) in neoplastic and non-neoplastic cystic lesions of the central nervous system and in the cerebrospinal fluid. Br J Cancer 69:952–956

    PubMed  CAS  Google Scholar 

  25. Ostman A, Heldin CH (2001) Involvement of platelet-derived growth factor in disease: development of specific antagonists. Adv Cancer Res 80:1–38

    Article  PubMed  CAS  Google Scholar 

  26. Westermark B, Heldin CH, Nister M (1995) Platelet-derived growth factor in human glioma. Glia 15:257–263

    Article  PubMed  CAS  Google Scholar 

  27. Cao Y (2001) Endogenous angiogenesis inhibitors and their therapeutic implications. Int J Biochem Cell Biol 33:357–369

    Article  PubMed  CAS  Google Scholar 

  28. Folkman J (2004) Endogenous angiogenesis inhibitors. APMIS 112:496–507

    Article  PubMed  CAS  Google Scholar 

  29. Nyberg P, Xie L, Kalluri R (2005) Endogenous inhibitors of angiogenesis. Cancer Res 65:3967–3979

    Article  PubMed  CAS  Google Scholar 

  30. Heldin CH (2004) Development and possible clinical use of antagonists for PDGF and TGF-beta. Ups J Med Sci 109:165–178

    Article  PubMed  Google Scholar 

  31. Auguste P, Javerzat S, Bikfalvi A (2003) Regulation of vascular development by fibroblast growth factors. Cell Tissue Res 314:157–166

    Article  PubMed  CAS  Google Scholar 

  32. Cao Y, Pettersson RF (1990) Human acidic fibroblast growth factor overexpressed in insect cells is not secreted into the medium. Growth Factors 3:1–13

    Article  PubMed  CAS  Google Scholar 

  33. Ostman A, Heldin CH (2007) PDGF receptors as targets in tumor treatment. Adv Cancer Res 97:247–274

    Article  PubMed  CAS  Google Scholar 

  34. Soutter AD, Nguyen M, Watanabe H, Folkman J (1993) Basic fibroblast growth factor secreted by an animal tumor is detectable in urine. Cancer Res 53:5297–5299

    PubMed  CAS  Google Scholar 

  35. Malek AM, Connors S, Robertson RL, Folkman J, Scott RM (1997) Elevation of cerebrospinal fluid levels of basic fibroblast growth factor in moyamoya and central nervous system disorders. Pediatr Neurosurg 27:182–189

    Article  PubMed  CAS  Google Scholar 

  36. Nguyen M, Watanabe H, Budson AE, Richie JP, Hayes DF, Folkman J (1994) Elevated levels of an angiogenic peptide, basic fibroblast growth factor, in the urine of patients with a wide spectrum of cancers. J Natl Cancer Inst 86:356–361

    Article  PubMed  CAS  Google Scholar 

  37. Abramsson A, Lindblom P, Betsholtz C (2003) Endothelial and nonendothelial sources of PDGF-B regulate pericyte recruitment and influence vascular pattern formation in tumors. J Clin Invest 112:1142–1151

    PubMed  CAS  Google Scholar 

  38. Kandel J, Bossy-Wetzel E, Radvanyi F, Klagsbrun M, Folkman J, Hanahan D (1991) Neovascularization is associated with a switch to the export of bFGF in the multistep development of fibrosarcoma. Cell 66:1095–1104

    Article  PubMed  CAS  Google Scholar 

  39. Folkman J (2007) Angiogenesis: an organizing principle for drug discovery? Nat Rev Drug Discov 6:273–286

    Article  PubMed  CAS  Google Scholar 

  40. Casanovas O, Hicklin DJ, Bergers G, Hanahan D (2005) Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell 8:299–309

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yihai Cao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, Y., Cao, R. & Hedlund, EM. R Regulation of tumor angiogenesis and metastasis by FGF and PDGF signaling pathways. J Mol Med 86, 785–789 (2008). https://doi.org/10.1007/s00109-008-0337-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-008-0337-z

Keywords

Navigation