The methods described in the previous section allow us to build a complete, modular, high-fidelity model of the helicopter and human occupant dynamics that is able to predict the effect of aircraft vibrations on the visual performance analysis. The accuracy of the predicted vibrations depends on the availabily of detailed data. In the present work, the proposed approach is illustrated using available data related to a generic helicopter configuration, without claiming any strict correlation with experimental data, for illustrative purposes. It is however worth stressing that the situation corresponds to that of rotorcraft designers during the early stages of a new design when the level of detail of available data increases as the design is refined, but experimental data are not yet available.
Aeroservoelastic helicopter model
A state-space model of the helicopter structural dynamics is at the core of the complete model used in the analysis. Accurate modeling of the rotorcraft loads that excite the structure vibrations, and the correct assessment of the vibration propagation paths is of paramount importance in evaluating Noise, Vibration and Harshness (NVH) aspects.
The model used in the analysis is representative of a five blade, soft in-plane main rotor, medium weight helicopter (Fig. 1). It includes several aspects of the aircraft dynamics, which will be briefly described in the following paragraphs.
Flight Mechanics. The airframe six degrees of freedom dynamics is augmented with its stability derivatives, computed through look-up tables of the fuselage, horizontal tail surface, and vertical empennage aerodynamics in CAMRAD/JA[25].
Aeroelasticity. From a detailed NASTRAN model, comprising more than 30000 nodes and 17000 elements (beam, shells, solids), the normal vibration modes of the airframe in the frequency band up to 50 Hz, i.e. about twice the blade passage frequency, are extracted. The main and tail rotor models are formulated in CAMRAD/JA, and include the first lead-lag and the second flapping bending modes, as is typical for soft in-plane articulated rotors, and a torsion mode associated with the compliance of the control chain. A structural damping factor of 1.5% is assumed throughout. The rotor models are formulated in multiblade coordinates. The main rotor model is also completed by a Pitt-Peters [26] axial inflow model, with one state.
Control. The simplified dynamics of the blage pitch control servoactuators is modeled in Matlab/Simulink, including the effects of dynamic compliance and the coupled hydro-mechanical behavior of the servo-valve. Linear displacements are converted into collective and cyclic commands by considering the corresponding gear ratio coefficients.
Sensors. Virtual accelerometers are placed in the pilot seat locations, and the instrument display panels.
Floor-human interface
The interface between the pilot and the helicopter is modeled through an adaptation of the simplified seat and cushion model presented in [27]. Lumped masses associated with the cushion and the seat are suspended through a spring and damper system, and connect to the pilot model at the buttocks. The model is sketched in Fig. 2, with data given in Table 2.
Table 2 Numerical values for the seat-cushion model
Upper body biodynamics model
Human biodynamics is predominantly modeled using three approaches:
-
(Linear) Lumped-Parameter Modeling (LPM), making use of point masses, ideal spring and damper elements;
-
Finite element Method (FEM);
-
Multibody Dynamics (MBD)
All three approaches can be (and have been) used for comfort assessment; however, FEM and MBD are more capable than LPM when upper body segments are of interest [24]. Therefore, the present work utilizes a multibody dynamics model to better estimate the acceleration of the head. A sitting human , the typical posture of helicopter pilots, is considered.
MBDynFootnote 1 [28], a free, general-purpose multibody solver, was used in developing the MBD model of the upper body. As presented in Fig. 3, the MBD model comprises 34 rigid bodies, associated with the sections of the trunk corresponding to each vertebra from C1 to S1, and 8 visceral masses. Relative vertebral displacements are assumed to lie in the direction locally tangent to the spine axis. The relative motion of the vertebrae along the anatomical antero-posterior and medio-lateral directions is constrained. Linear viscoelastic elements, acting on all the unconstrained degrees of freedom, connect the vertebrae. Visceral masses have non-negligible inertia, and their dynamics is excited through a different load-path with respect to vertebral sections, hence they can significantly affect the vibration dynamics of the upper body [29]. For this reason, they are also connected to the corresponding vertebrae, from T11 to S1, and between them, through linear viscoelastic elements. Additional lumped masses, representing the upper limbs, the head and a third of the mass of the thighs are respectively placed in correspondence to the centers of the shoulder girdles, of the head and of the pelvis. The pelvic area modeling is completed by the introduction of a mass and a viscoelastic element representing the buttocks, through which the body contacts the seat surface. The motion of the buttocks is constrained as to allow only the vertical relative displacement with respect to the S1 vertebra and the rotations in the sagittal plane (i.e. the anatomical plane ideally dividing the human body into left and right portions) and coronal plane (i.e. the anatomical plane ideally dividing the human body into anterior and posterior portions).
In the MBD human biodynamic model, the structural properties of the building blocks of the body can be used to construct the overall model. However, the mechanical properties of these building blocks vary within a population; hence, a statistical parametrization is needed to obtain practical ranges for the parameter values. The required mechanical properties of the human body parts (muscles, bones, etc.) are usually obtained through cadaver dissection and analysis [30, 31]. An alternative is to use non-invasive measurements and imaging techniques to gather information in vivo [32, 33]. In this work, values of the intervertebral and vertebra-viscera stiffness coefficients in the sagittal plane are taken from Ref. [34] and the reference values for stiffness and damping coefficients for intervertebral elements in the other directions are obtained from Ref. [35]. For elements connecting viscerae to vertebrae and viscerae to viscerae, the damping is assumed to be directly proportional to the stiffness, with a coefficient of 0.1, as reported in Ref. [34].
The topology of the multibody model is generated referring to the parametric ribcage geometry published by Shi et al. [36]. The ribcage model has been used to identify the most likely anthropometric parameters of the Kitazaki and Griffin [34] model. A 34 years old male, 1.78 mm tall weighting 84 kg, for a body mass index (BMI) of approximately 26.5 was found through an optimization procedure.
The corresponding estimated ribcage dimensions are compared with the one of the reference subject using scaling factors along the three dimensions \({\lambda _x, \lambda _y, \lambda _z}\). They are subsequently used to estimate the variation of the model geometry with respect to the reference one: the initial position of the nodes and the initial configuration of the algebraic constraints is obtained by directly scaling the related position vectors components with the \(\lambda _i\) coefficients. The masses are scaled keeping the ratio between the individual masses constant, ensuring that the mass of the trunk accounts for 68% of the total body mass, and that the mass of the viscerae constitutes 20% of the total body mass [37].
Intervertebral elements’ stiffness and damping coefficients are scaled using the following procedure:
-
1.
the ratio between each stiffness or damping coefficient and the corresponding mass element is evaluated on the reference parameters of [34];
-
2.
the resulting ratios are multiplied by the corresponding scaled masses;
-
3.
the resulting stiffness coefficients are modified by the value of a second-order polynomial function of the BMI of the subject, \(\mathcal {P}(\text {BMI})\).
Taking as an example the i-th stiffness coefficient \(K_i\), the scaling relationship is:
$$\begin{aligned} K_i = \mathcal {P}(\text {BMI})\dfrac{k_i}{m_i}M_i \end{aligned}$$
(11)
where \(K_i,M_i\) indicate the scaled coefficients, \(k_i,m_i\) the reference ones, and \(\mathcal {P}(\text {BMI})\) the correction polynomial obtained by fitting the model response, in terms of the first vertical resonance frequency of the spine, to experimental data. Readers may refer to Ref. [24, 38] for more details of the upper body model.
Ocular dynamics
The MBD model explained above represents the human dynamics from the buttock, where the vibrations enter the body and propagate to the head. Together with the seat-cushion model, the acceleration at the head as a result of the acceleration at the cabin floor can be estimated. From the head, however, vibrations are further transferred to the eye. As a result, the eye moves at an amplitude and phase that differs from that of the head, therefore spoiling the image of the display on the retina. This behaviour of the eye can be modeled using the same computational techniques that are used in biodynamic modeling (see for example Ref. [39]). However, a simpler approach, based on experimental transfer functions, may be preferred, since:
-
1.
the mass of the eye is very small with respect to that of the head; therefore, the coupling between head and eye motion is negligible;
-
2.
the head and torso can induce great variability in the response, considering changes in posture and seat inclination, while the eye’s dynamics is much less affected by the change in orientation;
-
3.
a detailed modeling of the eye would require a very complex, multiphysical and multidomain analysis, which is not mature at this point.
Considering the above-mentioned issues, rather than building a complete physical model of the eye or completely ignoring its effects, an empirical transfer function of the eye identified from experiments was preferred, to include the ocular dynamics and investigate its effects. As mentioned in Sect. 1, experiments achieved similar trends regarding the dynamic behaviour of the eye at high frequencies. Among the above-cited studies, Ref. [13] is preferred, since the head to eye transfer function including magnitude, phase and their standard deviation were provided. The reported dynamics are shown in Fig. 4 with its mean value and standard deviation of the subject group. The passive, or compliant, eye motion is also included for reference. A general trend can be observed, though the variation increases with increased frequency.
When the head to eye transfer function is multiplied by the head acceleration obtained using the biodynamic model, the estimated acceleration of the eye is obtained. Once the frequency-dependent response of the eye is obtained, it can then be used in visual vibration index formulations. In this work, the mean value of the eye response is preferred when the effect of other parameters is addressed, while the limits are used when the variability of the eye response is analyzed.
The vibration source
The vibration sources acting on the helicopter directly affect the acceleration measures at the pilots and display surface locations. MASST, the proposed simulation environment, allows to consider an increasing number of vibration sources. However, the vibration sources are limited to rotors, transmission, engines and rotor-fuselage interaction when a typical operation is considered. Among these, the major and persistent source of vibratory loads is the main rotor, while the rest contribute partially and occasionally [40]. The main rotor loads include the three force and moment components originated from each blade and summed at the main rotor hub, among which the vertical (i.e. in the direction of gravity) force is typically much larger in magnitude [41]. Therefore, the vertical hub force is selected as the vibration source, as visualized in Fig. 5. The forcing is applied as a unit force of varying frequency. In this case, a transfer function is obtained, which is a property of the system, independent of the forcing amplitude. In this work, transfer functions are used to analyze the effect of input frequency change on visual acuity and instrument reading ability degradation.