Skip to main content
Log in

A practical biodynamic feedthrough model for helicopters

  • Original Paper
  • Published:
CEAS Aeronautical Journal Aims and scope Submit manuscript

Abstract

Biodynamic feedthrough (BDFT) occurs when vehicle accelerations feed through the pilot’s body and cause involuntary motions of limbs, resulting in involuntary control inputs. BDFT can severely reduce ride comfort, control accuracy and, above all, safety during the operation of rotorcraft. Furthermore, BDFT can cause and sustain rotorcraft-pilot couplings. Despite many different studies conducted in past decades—both within and outside of the rotorcraft community—BDFT is still a poorly understood phenomenon. The complexities involved in BDFT have kept researchers and manufacturers in the rotorcraft domain from developing robust ways of dealing with its effects. A practical BDFT pilot model, describing the amount of involuntary control inputs as a function of accelerations, could pave the way to account for adverse BDFT effects. In the current paper, such a model is proposed. Its structure is based on the model proposed by Mayo (15th European Rotorcraft Forum, Amsterdam, pp. 81-001–81-012 1989), and its accuracy and usability are improved by incorporating insights from recently obtained experimental data. An evaluation of the model performance shows that the model describes the measured data well and that it provides a considerable improvement to the original Mayo model. Furthermore, the results indicate that the neuromuscular dynamics have an important influence on the BDFT model parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abbink, D.A.: Neuromuscular analysis of haptic gas pedal feedback during car following. Ph.D. thesis, TU Delft (2006)

  2. Banerjee, D., Jordan, L.M., Rosen, M.J.: Modeling the effects of inertial reactions on occupants of moving power wheelchairs. In: Rehabilitation Engineering and Assistive Technology Society. of North America Conference (RESNA), Salt Lake City (1996)

  3. Dieterich, O., Götz, J., DangVu, B., Haverdings, H., Masarati, P., Pavel, M.D., Jump, M., Gennaretti, M.: Adverse rotorcraft-pilot coupling: Recent research activities in europe. In: 34th European Rotorcraft Forum, Liverpool (2008)

  4. Gabel, R., Wilson, G.J.: Test approaches to external sling load instabilities. J. Am. Helicopter Soc. 13(3), 44–54 (1968). doi:10.4050/JAHS.13.44

    Google Scholar 

  5. Hess, R.A.: Theory for roll-ratchet phenomenon in high-performance aircraft. J. Guidance Contr. Dyn. 21(1), 101–108 (1998) .doi:10.2514/2.4203

    Article  Google Scholar 

  6. Humphreys, H., Book, W., Huggins, J.: Compensation for biodynamic feedthrough in backhoe operation by cab vibration control. In: IEEE International Conference on Robotics and Automation, pp. 4284–4290 (2011). doi:10.1109/ICRA.2011.59798081

  7. Jex, H.R., Magdaleno, R.E.: Biomechanical models for vibration feedthrough to hands and head for a semisuspine pilot. Aviat. Space Environ. Med. 49(1), 304–316 (1978)

    Google Scholar 

  8. Lee, B.P., Rodchenko, V.V., Zaichik, L.E., Yashin, Y.P.: Simulation-to-flight correlation. In: AIAA modeling and simulation technologies Conference, Austin (2003)

  9. Maddan, S., Walker, J.T., Miller, J.M.: Does size really matter? A reexamination of sheldon’s somatotypes and criminal behavior. Soc. Sci. J. 45, 330–344 (2008). doi:10.1016/j.soscij.2008.03.009

    Article  Google Scholar 

  10. Maddan, S., Walker, J.T., Miller, J.M.: The BMI as a somatotypic measure of physique: a rejoinder to Jeremey E.C. Genovese. Soc. Sci. J. 46, 394–401 (2009) . doi:10.1016/j.soscij.2009.04.006

    Article  Google Scholar 

  11. Masarati, P., Quaranta, G., Gennaretti, M., Serafini, J.: Aeroservoelastic analysis of rotorcraftpilot coupling: a parametric study. In: AHS 2010 American Helicopter Society 66th Annual Forum, Phoenix (2010)

  12. Masarati, P., Quaranta, G., Jump, M.: Experimental and numerical helicopter pilot characterization for aeroelastic rotorcraftpilot couplings analysis. Proc. Inst. Mech. Eng. Part G J. Aerospace Eng. (2011). doi:10.1177/0954410011427662

  13. Masarati, P., Quaranta, G.L.L., Jump, M.: Theoretical and experimental investigation of aeroelastic rotorcraft-pilot coupling. In: AHS 2012 American Helicopter Society 68th Annual Forum, Forth Worth (2012)

  14. Masarati, P., Quaranta, G., Serafini, J., Gennaretti, M.: Numerical investigation of aeroservoelastic rotorcraft-pilot coupling. In: AIDAA 2008 XIX Congresso Nazionale AIDAA, Forlì (2007)

  15. Mattaboni, M., Fumagalli, A., Jump, M., Masarati, P., Quaranta, G.: Biomechanical pilot properties identification by inverse kinematics/inverse dynamics multibody analysis. In: ICAS 2008, 26th Congress of the Int. Council of the Aeronautical Sciences, Anchorage (2008)

  16. Mayo, J.R.: The involuntary participation of a human pilot in a helicopter collective control loop. In: 15th European Rotorcraft Forum, Amsterdam, pp. 81-001–81-012 (1989)

  17. McLeod, R.W., Griffin, M.J.: Review of the effects of translational whole-body vibration on continuous manual control performance. J. Sound Vibr. 133(1), 55–115 (1989). doi:10.1016/0022-460X(89)90985-1

    Article  Google Scholar 

  18. Mitchell, D., Hoh, R., Adolph, A.J., Key, D.: Ground based simulation evaluation of the effects of time delays and motion on rotorcraft handling qualities. Tech. Rep. USAAVSCOM TR 91-A-010, AD-A256 921 (1992)

  19. Pavel, M.D.: A retrospective survey of adverse rotorcraft pilot couplings in european perspective. In: AHS 2012 American Helicopter Society 68th Annual Forum, Forth Worth (2012)

  20. Pavel, M.D., Malecki, J., DangVu, B., Masarati, P., Gennaretti, M., Jump, M., Jones, M., Smaili, H., Ionita, A., Zaicek, L.: Present and future trends in rotorcraft pilot couplings (RPCs): a retrospective survey of recent research activities within the european project ARISTOTEL. In: 2011 37th European Rotorcraft Forum (GA) llarate, pp. 275–293 (2011)

  21. Quaranta, G., Masarati, P., Venrooij, J.: Robust stability analysis: a tool to assess the impact of biodynamic feedthrough on rotorcraft. In: AHS 2012 American Helicopter Society 68th Annual Forum, Forth Worth (2012)

  22. Raney, D.L., Jackson, E.B., Buttrill, C.S., Adams, W.M.: The impact of structural vibrations on flying qualities of a supersonic transport. In: AIAA Atmospheric Flight Mechanics Conference, Montreal (2001)

  23. Rodchenko, V.V., Zaichik, L.E., Yashin, Y.P.: Handling qualities criterion for roll control of highly augmented aircraft. J. Guidance Contr. Dyn. 26(6), 928–934 (1993)

    Article  Google Scholar 

  24. Serafini, J., Gennaretti, M., Masarati, P., Quaranta, G., Dieterich, O.: Aeroelastic and biodynamic modeling for stability analysis of rotorcraft-pilot coupling phenomena. In: 34th European Rotorcraft Forum, Liverpool (2008)

  25. Sheldon, W., Stevens, S.S., Tucker, W.B.: The varieties of human physique: An introduction to constitutional psychology. Harper and Brothers Publishers, New York (1940)

  26. Sövényi, S., Gillespie, R.B.: Cancellation of biodynamic feedthrough in vehicle control tasks. IEEE Trans. Contr. Sys. Technol. 15(6), 1018–1029 (2007). doi:10.1109/TCST.2007.899679

    Article  Google Scholar 

  27. van der Helm, F.C.T., Schouten, A.C., de Vlugt, E., Brouwn, G.G.: Identification of intrinsic and reflexive components of human arm dynamics during postural control. J. Neurosci. Methods 119(1), 1–14 (2002). doi:10.1016/S0165-0270(02)00147-4

    Article  Google Scholar 

  28. Venrooij, J., Abbink, D.A., Mulder, M., van Paassen, M.M., Mulder, M.: Biodynamic feedthrough is task dependent. In: IEEE Int. Conf. on Systems, Man and Cybernetics, Istanbul, pp. 2571–2578 (2010). doi:10.1109/ICSMC.2010.5641915

  29. Venrooij, J., Abbink, D.A., Mulder, M., van Paassen, M.M., Mulder, M.: A method to measure the relationship between biodynamic feedthrough and neuromuscular admittance. IEEE Trans. Sys. Man Cybern. Part B Cybern. 41(4), 1158–1169 (2011). doi:10.1109/TSMCB.2011.2112347

    Article  Google Scholar 

  30. Venrooij, J., Mulder, M., van Paassen, M.M., Abbink, D.A., Bülthoff, H.H., Mulder, M.: Cancelling biodynamic feedthrough requires a subject and task dependent approach. In: IEEE Int. Conf. on Systems, Man, and Cybernetics, Anchorage, pp. 1670–1675 (2011). doi:10.1109/ICSMC.2011.6083911

  31. Venrooij, J., Mulder, M., van Paassen, M.M., Abbink, D.A., Mulder, M.: A review of biodynamic feedthrough mitigation techniques. In: 11th IFAC/IFIP/IFORS/IEA Symposium on analysis, design, and evaluation of human-machine systems, Valenciennes (2010)

  32. Venrooij, J., Yilmaz, D., Pavel, M.D., Quaranta, G., Jump, M., Mulder, M.: Measuring biodynamic feedthrough in helicopters. In: 37th Eur. Rotorcraft Forum, Gallarate, pp. 967–976 (2011)

  33. Walden, R.B.: A retrospective survey of pilot-structural coupling instabilities in naval rotorcraft. In: American Helicopter Society 63rd Annual Forum, Virginia Beach, pp. 897–914 (2007)

Download references

Acknowledgments

Marilena D. Pavel was supported by the ARISTOTEL project (European Community’s 7th Framework Programme, grant agreement no ACPO-GA-2010-266073). Heinrich H. Bülthoff was supported by the WCU (World Class University) program funded by the Ministry of Education, Science and Technology through the National Research Foundation of Korea (R31-10008) and the myCopter project (European Community’s 7th Framework Programme, grant agreement no 266470).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joost Venrooij.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Venrooij, J., Pavel, M.D., Mulder, M. et al. A practical biodynamic feedthrough model for helicopters. CEAS Aeronaut J 4, 421–432 (2013). https://doi.org/10.1007/s13272-013-0083-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13272-013-0083-y

Keywords

Navigation