Skip to main content
Log in

Aeroelastic Rotorcraft-Pilot Couplings: Problems and Methods

  • Published:
Aerotecnica Missili & Spazio Aims and scope Submit manuscript

Abstract

This work addresses the involuntary interaction between the pilot and the vehicle, with specific reference to helicopters along the vertical (or heave) axis. The problem is described and formulated mathematically. Means of analysis are discussed. Focus is placed on modeling requirements for both the vehicle and the pilot. Open problems and future work lines are sketched.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. C. Cockburn and B. G. Morton. Linear fractional representations of uncertain systems. Automatica, 33(7):1263–1271, July 1997. doi:10.1016/S0005-1098(97)00049-6.

    Article  MathSciNet  Google Scholar 

  2. O. Dieterich, J. G¨otz, B. DangVu, H. Haverdings, P. Masarati, M. D. Pavel, M. Jump, and M. Gennaretti. Adverse rotorcraft-pilot coupling: Recent research activities in Europe. In 34th European Rotorcraft Forum, Liverpool, UK, September 16–19 2008.

  3. S. I. G. Bernardini, J. Serafini and M. Gennaretti. Assessment of computational models for the effect of aeroelasticity on BVI noise prediction. Int’l J. of Aeroacoustics, 6(3):199–222, 2007.

    Article  Google Scholar 

  4. R. Gabel and G. J. Wilson. Test approaches to external sling load instabilities. Journal of the American Helicopter Society, 13(3):44–55, 1968. doi:10.4050/JAHS.13.44.

    Article  Google Scholar 

  5. M. Gennaretti and G. Bernardini. Novel boundary integral formulation for blade-vortex interaction aerodynamics of helicopter rotors. AIAA Journal, 45(6):1169–1176, 2007. doi:10.2514/1.18383.

    Article  Google Scholar 

  6. M. Gennaretti and G. Bernardini. Aeroacousto-elastic modeling for response analysis of helicopter rotors. In G. Buttazzo and A. Frediani, editors, Variational Analysis and Aerospace Engineering: Mathematical Challenges for Aerospace Design, pages 27–50. Springer Science+Business Media, LLC 2012, New York, 2012. doi:10.1007/978-1-4614-2435-2 2.

    Chapter  Google Scholar 

  7. M. Gennaretti and D. Muro. Multiblade reduced-order aerodynamics for state-space aeroelastic modeling of rotors. Journal of Aircraft, 49(2):495–502, 2012. doi:10.2514/1.C031422.

    Article  Google Scholar 

  8. M. Gennaretti, J. Serafini, P. Masarati, and G. Quaranta. Effects of biodynamic feedthrough in rotorcraft-pilot coupling: Collective bounce case. J. of Guidance, Control, and Dynamics, 36(6):1709–1721, 2013. doi:10.2514/1.61355.

    Article  Google Scholar 

  9. M. Jump, S. Hodge, B. DangVu, P. Masarati, G. Quaranta, M. Mattaboni, M. D. Pavel, and O. Dieterich. Adverse rotorcraft-pilot coupling: Test campaign development at the university of Liverpool. In 34th European Rotorcraft Forum, Liverpool, UK, September 16–19 2008.

  10. P. Masarati, G. Bindolino, and G. Quaranta. A parametric pilot/control device model for rotor-craft biodynamic feedthrough analysis. In 40th European Rotorcraft Forum, Southampton, UK, September 2–5 2014.

  11. P. Masarati, M. Morandini, and P. Mantegazza. An efficient formulation for general-purpose multi-body/multiphysics analysis. J. of Computational and Nonlinear Dynamics, 9(4):041001, 2014. doi:10.1115/1.4025628.

    Article  Google Scholar 

  12. P. Masarati and G. Quaranta. Bioaeroservoelastic analysis of involuntary rotorcraft-pilot interaction. J. of Computational and Nonlinear Dynamics, 9(3):031009, July 2014. doi:10.1115/1.4025354.

    Article  Google Scholar 

  13. P. Masarati, G. Quaranta, and M. Jump. Experimental and numerical helicopter pilot characterization for aeroelastic rotorcraft-pilot couplings analysis. Proc. IMechE, Part G: J. Aerospace Engineering, 227(1):124–140, January 2013. doi:10.1177/0954410011427662.

    Article  Google Scholar 

  14. P. Masarati, G. Quaranta, J. Serafini, and M. Gennaretti. Numerical investigation of aeroser-voelastic rotorcraft-pilot coupling. In XIX Congresso Nazionale AIDAA, Forlì, Italy, September 17–21 2007.

  15. P. Masarati, G. Quaranta, and A. Zanoni. Dependence of helicopter pilots’ biodynamic feedthrough on upper limbs’ muscular activation patterns. Proc. IMechE Part K: J. Multi-body Dynamics, 227(4):344–362, December 2013. doi:10.1177/1464419313490680.

    Google Scholar 

  16. P. Masarati, G. Quaranta, and A. Zanoni. A detailed biomechanical pilot model for multi-axis involuntary rotorcraft-pilot couplings. In 41st European Rotorcraft Forum, Munich, Germany, September 1–4 2015.

  17. J. R. Mayo. The involuntary participation of a human pilot in a helicopter collective control loop. In 15th European Rotorcraft Forum, pages 81.1–1.12, Amsterdam, The Netherlands, 12–15 September 1989.

    Google Scholar 

  18. V. Muscarello, P. Masarati, and G. Quaranta. Robust aeroservoelastic analysis for the investigation of rotorcraft pilot couplings. In 3rd CEAS Air & Space Conference, Venice, Italy, October 24–28 2011.

    Google Scholar 

  19. V. Muscarello, P. Masarati, and G. Quaranta. Robust aeroservoelastic analysis for the investigation of rotorcraft pilot couplings. l’Aerotecnica Missili e Spazio, 91(1–2):32–41, March–June 2012.

    Google Scholar 

  20. V. Muscarello, G. Quaranta, and P. Masarati. The role of rotor coning in helicopter prone-ness to collective bounce. Aerospace Science and Technology, 36:103–113, July 2014. doi:10.1016/j.ast.2014.04.006.

    Article  Google Scholar 

  21. C. J. Ockier. Pilot induced oscillations in helicopters — three case studies. Technical Report IB 111-96/12, German Aerospace Center (DLR), Braunschweig, Germany, 1996.

    Google Scholar 

  22. M. D. Pavel, M. Jump, B. Dang-Vu, P. Masarati, M. Gennaretti, A. Ionita, L. Zaichik, H. Smaili, G. Quaranta, D. Yilmaz, M. Jones, J. Serafini, and J. Malecki. Adverse rotorcraft pilot couplings — past, present and future challenges. Progress in Aerospace Sciences, 62:1–51, October 2013. doi:10.1016/j.paerosci.2013.04.003.

    Article  Google Scholar 

  23. M. D. Pavel, J. Malecki, B. DangVu, P. Masarati, G. Quaranta, M. Gennaretti, M. Jump, H. Smaili, A. Ionita, and L. Zaicek. Aircraft and rotorcraft pilot coupling: a survey of recent research activities within the European project ARISTOTEL. In 3rd CEAS Air & Space Conference, Venice, Italy, October 24–28 2011.

  24. M. D. Pavel, P. Masarati, M. Gennaretti, M. Jump, L. Zaichik, B. Dang-Vu, L. Lu, D. Yilmaz, G. Quaranta, A. Ionita, and J. Serafini. Practices to identify and preclude adverse aircraft-and-rotorcraft-pilot couplings — a design perspective. Progress in Aerospace Sciences, 76:55–89, 2015. doi:10.1016/j.paerosci.2015.05.002.

    Article  Google Scholar 

  25. M. D. Pavel, D. Yilmaz, O. Stroosma, B. Dang-Vu, P. Masarati, G. Quaranta, M. Gennaretti, M. Jump, L. Lu, M. Jones, H. Smaili, and L. Zaichik. Practices for identifying and precluding adverse aircraft- and rotorcraft-pilot couplings events — simulator guidelines. Progress in Aerospace Sciences, 77:54–87, August 2015. doi:10.1016/j.paerosci.2015.05.007.

    Article  Google Scholar 

  26. G. Quaranta, V. Muscarello, and P. Masarati. Lead-lag damper robustness analysis for helicopter ground resonance. J. of Guidance, Control, and Dynamics, 36(4):1150–1161, July 2013. doi:10.2514/1.57188.

    Article  Google Scholar 

  27. G. Quaranta, A. Tamer, V. Muscarello, P. Masarati, M. Gennaretti, J. Serafini, and M. M. Colella. Evaluation of rotorcraft aeroelastic stability using robust analysis. In 38th European Rotorcraft Forum, Amsterdam, NL, 2012.

  28. G. Quaranta, A. Tamer, V. Muscarello, P. Masarati, M. Gennaretti, J. Serafini, and M. M. Colella. Rotorcraft aeroelastic stability using robust analysis. CEAS Aeronaut. J., 5(1):29–39, March 2014. doi:10.1007/s13272-013-0082-z.

    Article  Google Scholar 

  29. S. Skogestad and I. Postlethwaite. Multivariable Feedback Control. John Wiley & Sons, Chichester, 2005.

    MATH  Google Scholar 

  30. M. D. Takahashi. H∞ helicopter flight control law design with and without rotor state feedback. J. of Guidance, Control, and Dynamics, 17(6):1245–1251, 1994. doi:10.2514/3.21340.

    Article  Google Scholar 

  31. J. Venrooij, M. van Paassen, M. Mulder, D. Abbink, M. Mulder, F. van der Helm, and H. Bulthoff. A framework for biodynamic feedthrough analy sis part i: Theoretical foundations. Cybernetics, IEEE Transactions on, 44(9):1686–1698, September 2014. doi:10.1109/TCYB.2014.2311043.

    Article  Google Scholar 

  32. S. Zanlucchi, P. Masarati, and G. Quaranta. A pilot-control device model for helicopter sensitivity to collective bounce. In ASME IDETC/CIE 2014, Buffalo, NY, August 17–20 2014. DETC2014-34479.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quaranta, G., Masarati, P., Serafini, J. et al. Aeroelastic Rotorcraft-Pilot Couplings: Problems and Methods. Aerotec. Missili Spaz. 95, 176–187 (2016). https://doi.org/10.1007/BF03404726

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03404726

Navigation