Skip to main content
Log in

Molecular cloning and characterization of a novel salt-specific responsive WRKY transcription factor gene IlWRKY2 from the halophyte Iris lactea var. chinensis

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Iris lactea var. chinensis is a perennial herbaceous halophyte with high salt tolerance and ornamental value. Previous RNA sequencing analysis revealed a transcription factor gene IlWRKY2 expression was upregulated by salt stress. To obtain the full-length sequence, the basic characteristics of IlWRKY2 and its expression pattern under salt stress. Full-length cDNA of IlWRKY2 was cloned by 3′/5′ RACE based on the intermediate sequence obtained by RNA sequencing analysis. Structure analysis of IlWRKY2 were performed by Compute pI/MW tool, PSIPRED and SWISS-MODEL analysis. Sequence analysis of IlWRKY2 were performed by BLAST program, DNAman software, MEGA software and MEME program. IlWRKY2 expression pattern was analyzed by quantitative real-time polymerase chain reaction. The open reading frame of IlWRKY2 is 1338 bp in length, which encodes a protein of 446 amino acids. Amino acid sequence analysis revealed that the IlWRKY2 contains one WRKY domains with a zinc finger motif C–X5–C–X23–H–X–H. Phylogenetic analysis showed that the IlWRKY2 was much closer to EgWRKY41 from Elaeis guineensis and MaWRKY42 from Musa acuminata subsp. malaccensis. Furthermore, the expression of IlWRKY2 in I. lactea var. chinensis shoots was upregulated by different concentrations of NaCl treatment and increased 16-fold after treatment with 200 mM NaCl for 12 h. Obtained the full-length cDNA of IlWRKY2 which belongs to Group II-b WRKY subfamily. IlWRKY2 expression was obviously induced by salt stress in I. lactea var. chinensis shoots and it may play an important role in halophyte I. lactea var. chinensis adaptation to environmental salt stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agarwal P, Reddy M, Chikara J (2011) WRKY: its structure, evolutionary relationship, DNA-binding selectivity, role in stress tolerance and development of plants. Mol Biol Rep 38:3883–3896

    Article  PubMed  CAS  Google Scholar 

  • Akhtar M, Jaiswal A, Taj G, Jaiswal JP, Qureshi MI, Singh NK (2012) DREB1/CBF transcription factors: their structure, function and role in abiotic stress tolerance in plants. J Genet 91:385

    Article  PubMed  CAS  Google Scholar 

  • Ambawat S, Sharma P, Yadav NR, Yadav RC (2013) MYB transcription factor genes as regulators for plant responses: an overview. Physiol Mol Biol Plants 19:307–321

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Besseau S, Li J, Palva ET (2012) WRKY54 and WRKY70 co-operate as negative regulators of leaf senescence in Arabidopsis thaliana. J Exp Bot 63:2667

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen Y, Li L, Xu Q, Kong Y, Wang H, Wu W (2009) The WRKY6 transcription factor modulates PHOSPHATE1 expression in response to low pi stress in Arabidopsis. Plant Cell 21:3554–3566

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen L, Song Y, Li S, Zhang L, Zou C, Yu D (2012) The role of WRKY transcription factors in plant abiotic stresses. BBA-Gene Regul Mech 1819:120–128

    CAS  Google Scholar 

  • De Clercq I, Vermeirssen V, Van Aken O, Vandepoele K, Murcha MW, Law SR, Inzé A, Ng S, Ivanova A, Rombaut D (2013) The membrane-bound NAC transcription factor ANAC013 functions in mitochondrial retrograde regulation of the oxidative stress response in Arabidopsis. Plant Cell 25:3472–3490

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Deinlein U, Stephan AB, Horie T, Luo W, Xu G, Schroeder JI (2014) Plant salt-tolerance mechanisms. Trends Plant Sci 19:371–379

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Du C, Zhao P, Zhang H, Li N, Zheng L, Wang Y (2017) The Reaumuria trigyna transcription factor RtWRKY1 confers tolerance to salt stress in transgenic Arabidopsis. J Plant Physiol 215:48–58

    Article  PubMed  CAS  Google Scholar 

  • Eulgem T, Somssich IE (2007) Networks of WRKY transcription factors in defense signaling. Curr Opin Plant Biol 10:366–371

    Article  PubMed  CAS  Google Scholar 

  • Eulgem T, Rushton PJ, Robatzek S, Somssich IE (2000) The WRKY superfamily of plant transcription factors. Trends Plant Sci 5:199–206

    Article  PubMed  CAS  Google Scholar 

  • Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963

    Article  PubMed  CAS  Google Scholar 

  • Flowers TJ, Galal HK, Bromham L (2010) Evolution of halophytes: multiple origins of salt tolerance in land plants. Funct Plant Biol 37:604–612

    Article  Google Scholar 

  • Flowers TJ, Munns R, Colmer TD (2015) Sodium chloride toxicity and the cellular basis of salt tolerance in halophytes. Ann Bot (Lond) 115:419–431

    Article  CAS  Google Scholar 

  • Gu C-S, Liu L-Q, Zhao Y-H, Deng Y-M, Zhu X-D, Huang S-Z (2014) Overexpression of Iris. lactea var. chinensis metallothionein llMT2a enhances cadmium tolerance in Arabidopsis thaliana. Ecotoxicol Environmental Safe 105:22–28

    Article  CAS  Google Scholar 

  • Guillaumie S, Mzid R, Méchin V, Léon C, Hichri I, Destrac-Irvine A, Trossat-Magnin C, Delrot S, Lauvergeat V (2010) The grapevine transcription factor WRKY2 influences the lignin pathway and xylem development in tobacco. Plant Mol Biol 72:215–234

    Article  PubMed  CAS  Google Scholar 

  • Guo C, Guo R, Xu X, Gao M, Li X, Song J, Zheng Y, Wang X (2014) Evolution and expression analysis of the grape (Vitis vinifera L.) WRKY gene family. J Exp Bot 65:1513–1528

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • He H, Dong Q, Shao Y, Jiang H, Zhu S, Cheng B, Xiang Y (2012) Genome-wide survey and characterization of the WRKY gene family in Populus trichocarpa. Plant Cell Rep 31:1199–1217

    Article  PubMed  CAS  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Calif Agric Exp Station Circ 347:357–359

    Google Scholar 

  • Huang S, Han Y, Xie M (2003) The studies and exploitation of Chinese ornamental Iris resources. Chin Wild Plant Res 22:4–7

    Google Scholar 

  • Jiang Y, Deyholos MK (2006) Comprehensive transcriptional profiling of NaCl-stressed Arabidopsis roots reveals novel classes of responsive genes. BMC Plant Biol 6:25

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jiang Y, Deyholos MK (2009) Functional characterization of Arabidopsis NaCl-inducible WRKY25 and WRKY33 transcription factors in abiotic stresses. Plant Mol Biol 69:91–105

    Article  PubMed  CAS  Google Scholar 

  • Jiang Y, Duan Y, Yin J, Ye S, Zhu J, Zhang F, Lu W, Fan D, Luo K (2014) Genome-wide identification and characterization of the Populus WRKY transcription factor family and analysis of their expression in response to biotic and abiotic stresses. J Exp Bot 65:6629–6644

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jin H, Dong D, Yang Q, Zhu D (2016) Salt-responsive transcriptome profiling of Suaeda glauca via RNA sequencing. PLoS ONE 11:e0150504

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li S, Fu Q, Chen L, Huang W, Yu D (2011) Arabidopsis thaliana WRKY25, WRKY26, and WRKY33 coordinate induction of plant thermotolerance. Planta 233:1237–1252

    Article  PubMed  CAS  Google Scholar 

  • Licausi F, Ohme-Takagi M, Perata P (2013) APETALA2/ethylene responsive factor (AP2/ERF) transcription factors: mediators of stress responses and developmental programs. New Phytol 199:639–649

    Article  PubMed  CAS  Google Scholar 

  • Ling J, Jiang W, Zhang Y, Yu H, Mao Z, Gu X, Huang S, Xie B (2011) Genome-wide analysis of WRKY gene family in Cucumis sativus. BMC Genom 12:471

    Article  CAS  Google Scholar 

  • Liu D, Leib K, Zhao P, Kogel KH, Langen G (2014a) Phylogenetic analysis of barley WRKY proteins and characterization of HvWRKY1 and -2 as repressors of the pathogen-inducible gene HvGER4c. Mol Genet Genom 289:1331–1345

    Article  CAS  Google Scholar 

  • Liu Q-L, Xu K-D, Pan Y-Z, Jiang B-B, Liu G-L, Jia Y, Zhang H-Q (2014b) Functional analysis of a novel chrysanthemum WRKY transcription factor gene involved in salt tolerance. Plant Mol Biol Rep 32:282–289

    Article  CAS  Google Scholar 

  • Liu Q, Luo L, Wang X, Shen Z, Zheng L (2017) Comprehensive analysis of rice laccase gene (OsLAC) family and ectopic expression of OsLAC10 enhances tolerance to copper stress in Arabidopsis. Int J Mol Sci 18:209

    Article  PubMed Central  Google Scholar 

  • Mangelsen E, Kilian J, Berendzen KW, Kolukisaoglu ÜH, Harter K, Jansson C, Wanke D (2008) Phylogenetic and comparative gene expression analysis of barley (Hordeum vulgare) WRKY transcription factor family reveals putatively retained functions between monocots and dicots. BMC Genom 9:194

    Article  CAS  Google Scholar 

  • Miller G, Shulaev V, Mittler R (2008) Reactive oxygen signaling and abiotic stress. Physiol Plant 133:481–489

    Article  PubMed  CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681  

    Article  PubMed  CAS  Google Scholar 

  • Munns R, James RA, Xu B, Athman A, Conn SJ, Jordans C, Byrt CS, Hare RA, Tyerman SD, Tester M (2012) Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene. Nat Biotechnol 30:360–364

    Article  PubMed  CAS  Google Scholar 

  • Niu CF, Wei W, Zhou QY, Tian AG, Hao YJ, Zhang WK, Ma B, Lin Q, Zhang ZB, Zhang JS (2012) Wheat WRKY genes TaWRKY2 and TaWRKY19 regulate abiotic stress tolerance in transgenic Arabidopsis plants. Plant Cell Environ 35:1156

    Article  PubMed  CAS  Google Scholar 

  • Peng Z, He S, Gong W, Sun J, Pan Z, Xu F, Lu Y, Du X (2014) Comprehensive analysis of differentially expressed genes and transcriptional regulation induced by salt stress in two contrasting cotton genotypes. BMC Genom 15:760

    Article  CAS  Google Scholar 

  • Ross CA, Liu Y, Shen QJ (2007) The WRKY gene family in rice (Oryza sativa). J Integr Plant Biol 49:827–842

    Article  CAS  Google Scholar 

  • Rushton PJ, Somssich IE, Ringler P, Shen QJ (2010) WRKY transcription factors. Trends Plant Sci 15:247–258

    Article  PubMed  CAS  Google Scholar 

  • Schroeder JI, Delhaize E, Frommer WB, Guerinot ML, Harrison MJ, Herrera-Estrella L, Horie T, Kochian LV, Munns R, Nishizawa NK (2013) Using membrane transporters to improve crops for sustainable food production. Nature 497:60

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shi W, Hao L, Li J, Liu D, Guo X, Li H (2014) The Gossypium hirsutum WRKY gene GhWRKY39-1 promotes pathogen infection defense responses and mediates salt stress tolerance in transgenic Nicotiana benthamiana. Plant Cell Rep 33:483–498

    Article  PubMed  CAS  Google Scholar 

  • Song H, Wang P, Hou L, Zhao S, Zhao C, Xia H, Li P, Zhang Y, Bian X, Wang X (2016) Global analysis of WRKY genes and their response to dehydration and salt stress in soybean. Front Plant Sci 7:9

    PubMed  PubMed Central  Google Scholar 

  • Sun XC, Gao YF, Li HR, Yang SZ, Liu YS (2015) Over-expression of SlWRKY39 leads to enhanced resistance to multiple stress factors in tomato. J Plant Biol 58:52–60

    Article  CAS  Google Scholar 

  • Székely G, Ábrahám E, Cséplő Á, Rigó G, Zsigmond L, Csiszár J, Ayaydin F, Strizhov N, Jásik J, Schmelzer E (2008) Duplicated P5CS genes of Arabidopsis play distinct roles in stress regulation and developmental control of proline biosynthesis. Plant J 53:11–28

    Article  PubMed  CAS  Google Scholar 

  • Tang J, Wang F, Wang Z, Huang Z, Xiong A, Hou X (2013) Characterization and co-expression analysis of WRKY orthologs involved in responses to multiple abiotic stresses in Pak-choi (Brassica campestris ssp. chinensis). BMC Plant Biol 13:188

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Teakle NL, Tyerman SD (2010) Mechanisms of Cl-transport contributing to salt tolerance. Plant Cell Environ 33:566–589

    Article  PubMed  CAS  Google Scholar 

  • Undurraga SF, Santos MP, Paez-Valencia J, Yang H, Hepler PK, Facanha AR, Hirschi KD, Gaxiola RA (2012) Arabidopsis sodium dependent and independent phenotypes triggered by H+-PPase up-regulation are SOS1 dependent. Plant Sci 183:96–105

    Article  PubMed  CAS  Google Scholar 

  • Verslues PE, Agarwal M, Katiyar-Agarwal S, Zhu J, Zhu JK (2006) Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J 45:523–539

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Guo J, Meng Q, Cui X (2008) Physiological responses of krishum (Iris lactea Pall. var. chinensis Koidz) to neutral and alkaline salts. J Agron Crop Sci 194:429–437

    CAS  Google Scholar 

  • Wang J, Zhou A, Li Y, Li S, Zhang X, Che D (2016a) Overexpression of IrlVHA-c, a vacuolar-type H+-ATPase c subunit gene from Iris lactea, enhances salt tolerance in tobacco. Plant Mol Biol Rep 34:877–885

    Article  CAS  Google Scholar 

  • Wang X, Gao B, Liu X, Dong X, Zhang Z, Fan H, Zhang L, Wang J, Shi S, Tu P (2016b) Salinity stress induces the production of 2-(2-phenylethyl) chromones and regulates novel classes of responsive genes involved in signal transduction in Aquilaria sinensis calli. BMC Plant Biol 16:119

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wei W, Zhang Y, Han L, Guan Z, Chai T (2008) A novel WRKY transcriptional factor from Thlaspi caerulescens negatively regulates the osmotic stress tolerance of transgenic tobacco. Plant Cell Rep 27:795–803

    Article  PubMed  CAS  Google Scholar 

  • Wei K-F, Chen J, Chen Y-F, Wu L-J, Xie D-X (2012) Molecular phylogenetic and expression analysis of the complete WRKY transcription factor family in maize. DNA Res 19:153–164

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu K-L, Guo Z-J, Wang H-H, Li J (2005) The WRKY family of transcription factors in rice and Arabidopsis and their origins. DNA Res 12:9–26

    Article  PubMed  CAS  Google Scholar 

  • Yamasaki K, Kigawa T, Inoue M, Tateno M, Yamasaki T, Yabuki T, Aoki M, Seki E, Matsuda T, Tomo Y (2005) Solution structure of an Arabidopsis WRKY DNA binding domain. Plant Cell 17:944–956

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yensen NP, Biel KY (2008) Soil remediation via salt-conduction and the hypotheses of halosynthesis and photoprotection. In: Khan MA, Weber DJ (eds) Ecophysiology of high salinity tolerant plants. Springer, Dordrecht, pp 313–344

    Google Scholar 

  • Yousfi F-E, Makhloufi E, Marande W, Ghorbel AW, Bouzayen M, Berges H (2017) Comparative analysis of WRKY genes potentially involved in salt stress responses in Triticum turgidum L. ssp. durum. Front Plant Sci 7:2034

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang B, Li P-F, Fan F-C (2012) Ionic relations and proline accumulation in shoots of two Chinese Iris germplasms during NaCl stress and subsequent relief. Plant Growth Regul 68:49–56

    Article  CAS  Google Scholar 

  • Zhou Q, Tian A, Zou H, Xie Z, Lei G, Huang J, Wang C, Wang H, Zhang J, Chen S (2008) Soybean WRKY-type transcription factor genes, GmWRKY13, GmWRKY21, and GmWRKY54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants. Plant Biotechnol J 6:486–503

    Article  PubMed  CAS  Google Scholar 

  • Zhou L, Wang N-N, Gong S-Y, Lu R, Li Y, Li X-B (2015) Overexpression of a cotton (Gossypium hirsutum) WRKY gene, GhWRKY34, in Arabidopsis enhances salt-tolerance of the transgenic plants. Plant Physiol Biochem 96:311–320

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by research grants from the Project of the National Natural Science Foundation of China (No. 31501796, 31572196), the Natural Science Foundation of Jiangsu Province (No. BK20150550) and Public Science and Technology Research Funds Projects of Ocean (No. 201505023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingquan Liu.

Ethics declarations

Conflict of interest

Author Jun Tang declares that he does not have conflict of interest. Author Qingquan Liu declares that he does not have conflict of interest. Author Haiyan Yuan declares that she does not have conflict of interest. Author Yongxia Zhang declares that she does not have conflict of interest. Author Weilin Wang declares that she does not have conflict of interest. Author Suzhen Huang declares that she does not have conflict of interest.

Research involving human and animal participant

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, J., Liu, Q., Yuan, H. et al. Molecular cloning and characterization of a novel salt-specific responsive WRKY transcription factor gene IlWRKY2 from the halophyte Iris lactea var. chinensis. Genes Genom 40, 893–903 (2018). https://doi.org/10.1007/s13258-018-0698-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-018-0698-9

Keywords

Navigation