Skip to main content
Log in

The identification of growth, immune related genes and marker discovery through transcriptome in the yellow drum (Nibea albiflora)

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Yellow drum (Nibea albiflora) is a commercially important marine fish, which is widely distributed in the coastal waters of China, Japan and Korea. Wild yellow drum resources have dramatically declined due to overfishing and ocean pollution. Genetic data can contribute to biodiversity conservation and protection. And molecular markers can play important roles in genetic breeding and aid in germplasm preservation in fish. In this study, 11 tissues (brain, heart, liver, kidney, muscle, head kidney, skin, fin, spleen, gonad and air bladder) were collected for pooled RNA sequencing. The unigenes were assembled using Trinity and EvidentialGene, and were then aligned to nr, nt, Swiss-Prot GO, KEGG, and KOG for annotation. Molecular markers (e.g. simple sequence repeat, SSR and single nucleotide polymorphism, SNP) were detected using MIcroSAtellite identification tool (MISA) and Genome Analysis Tool Kit (GATK). All clean reads were assembled into 109,209 transcripts, and 31,183 unigenes were generated after pruning and classifying, ranging from 201 to 19,857 bp in length (1230 bp in average), and 26,728 (85.7%) assembled unigenes had significant hits in public databases. Total of 27 and 103 unigenes were respectively identified as involved in growth- and immune-related pathways in the N. albiflora transcriptome. In addition, we identified a considerable quantity of molecular markers, including 11,484 SSRs and 56,186 SNPs. The growth- and immune-relevant genes and the molecular markers identified here provided a meaningful reference gene set and laid a foundation for future genetic selection and breeding for this species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Ao J, Mu Y, Xiang LX, Fan D, Feng M, Zhang S, Shi Q, Zhu LY, Li T, Ding Y (2015) Genome sequencing of the Perciform fish Larimichthys crocea provides insights into molecular and genetic mechanisms of stress adaptation. PLoS Genet 11:e1005118

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baoprasertkul P, Peatman E, Abernathy J, Liu Z (2007) Structural characterisation and expression analysis of toll-like receptor 2 gene from catfish. Fish Shellfish Immunol 22(4):418–426

    Article  PubMed  CAS  Google Scholar 

  • Bilodeau AL, Waldbieser GC (2005) Activation of TLR3 and TLR5 in channel catfish exposed to virulent Edwardsiella ictaluri. Dev Comp Immunol 29:713–721

    Article  PubMed  CAS  Google Scholar 

  • Chen R, Lou B, Xu D, Zhan W, Takeuchi Y, Yang F, Liu F (2017) Induction of meiotic gynogenesis in yellow drum (Nibea albiflora, Sciaenidae) using heterologous sperm and evidence for female homogametic sex determination. Aquaculture 479:667–674

    Article  CAS  Google Scholar 

  • Cheng YZ, Xu TJ, Jin XX, Wang RX (2011) Complete mitochondrial genome of the yellow drum Nibea albiflora (Perciformes, Sciaenidae). Mitochondrial DNA 22:80–82

    Article  PubMed  CAS  Google Scholar 

  • Chou MY, Yang CH, Lu FI, Lin HC, Hwang PP (2002) Modulation of calcium balance in tilapia larvae (Oreochromis mossambicus) acclimated to low-calcium environments. J Comp Physiol B 172:109–114

    Article  PubMed  CAS  Google Scholar 

  • Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676

    Article  PubMed  CAS  Google Scholar 

  • De-Santis C, Jerry DR (2007) Candidate growth genes in finfish-where should we be looking? Aquaculture 272:22–38

    Article  CAS  Google Scholar 

  • Dong LS, Xiao SJ, Chen JW, Wan L, Wang ZY (2016) Genomic selection using extreme phenotypes and pre-selection of SNPs in large yellow croaker (Larimichthys crocea). Mar Biotechnol 18:575–583

    Article  PubMed  CAS  Google Scholar 

  • Engelsma MY, Huising MO, van Muiswinkel WB, Flik G, Jimmy KJ, Savelkoul HF, Kemenad BV (2002) Neuroendocrine-immune interactions in fish: a role for interleukin-1. Vet Immunol Immunopathol 87:467–479

    Article  PubMed  CAS  Google Scholar 

  • Grabherr MG, Haas BJ, Yassour M et al (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Han ZQ, Gao TX, Yanagimoto T, Sakurai Y (2008) Genetic population structure of Nibea albiflora in Yellow Sea and East China Sea. Fish Sci 74:544–552

    Article  CAS  Google Scholar 

  • Han ZF, Xiao SJ, Liu XD, Liu Y, Li JK, Xie YJ, Wang ZY (2016) De novo characterization of Larimichthys crocea transcriptome for growth-/immune-related gene identification and massive microsatellite (SSR) marker development. Chin J Oceanol Limnol 35:225–234

    Article  CAS  Google Scholar 

  • Haunerland NH, Spener F (2004) Fatty acid-binding proteins-insights from genetic manipulations. Prog Lipid Res 43:328–349

    Article  PubMed  CAS  Google Scholar 

  • Her GM, Chiang CC, Wu JL (2004) Zebrafish intestinal fatty acid binding protein (I-FABP) gene promoter drives gut-specific expression in stable transgenic fish. Genesis 38:26–31

    Article  PubMed  CAS  Google Scholar 

  • Holland MCH, Lambris JD (2002) The complement system in teleosts. Fish Shellfish Immunol 12:399–420

    Article  PubMed  CAS  Google Scholar 

  • Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 11:373–384

    Article  PubMed  CAS  Google Scholar 

  • Kileng O, Albuquerque A, Robertsen B (2008) Induction of interferon system genes in Atlantic salmon by the imidazoquinoline S-27609, a ligand for Toll-like receptor 7. Fish Shellfish Immunol 24:514–522

    Article  PubMed  CAS  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ma H, Yang J, Su P, Chen S (2009) Genetic analysis of gynogenetic and common populations of Verasper moseri using SSR markers. Wuhan Univ J Nat Sci 14:267–273

    Article  CAS  Google Scholar 

  • Ma C, Ma H, Ma L, Jiang K, Cui H, Ma Q (2011) Isolation and characterization of 16 polymorphic microsatellite markers from Nibea albiflora. Fish Sci 77:707–711

    Article  CAS  Google Scholar 

  • Ma D, Ma A, Huang Z, Wang G, Wang T, Xia D, Ma B (2016) Transcriptome analysis for identification of genes related to gonad differentiation, growth, immune response and marker discovery in the turbot (Scophthalmus maximus). PLoS ONE 11:e0149414

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McKenna A, Hanna M, Banks E et al (2010) The Genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McPherron AC, Lawler AM, Lee SJ (1997) Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 387:83–90

    Article  PubMed  CAS  Google Scholar 

  • Nakasugi K, Crowhurst R, Bally J, Waterhouse P (2014) Combining transcriptome assemblies from multiple de novo assemblers in the allo-tetraploid plant Nicotiana benthamiana. PLoS ONE 9:e91776

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rebl A, Goldammer T, Seyfert HM (2010) Toll-like receptor signaling in bony fish. Vet Immunol Immunopathol 134:139–150. https://doi.org/10.1016/j.vetimm.2009.09.021

    Article  PubMed  CAS  Google Scholar 

  • Ribaut JM, Hu X, Hoisington D, González-de-León D (1997) Use of STSs and SSRs as rapid and reliable preselection tools in a marker-assisted selection-backcross scheme. Plant Mol Biol Rep 15:154–162

    Article  CAS  Google Scholar 

  • Skjæveland I, Iliev DB, Strandskog G, Jorgensen JB (2009) Identification and characterization of TLR8 and MyD88 homologs in Atlantic salmon (Salmo salar). Dev Comp Immunol 33:1011–1017

    Article  PubMed  CAS  Google Scholar 

  • Steinbacher P, Haslett JR, Obermayer A et al (2007) MyoD and myogenin expression during myogenic phases in brown trout: a precocious onset of mosaic hyperplasia is a prerequisite for fast somatic growth. Dev Dyn 236:1106–1114

    Article  PubMed  CAS  Google Scholar 

  • Takano T, Kondo H, Hirono I, Endo M, Saito-Taki T, Aoki T (2007) Molecular cloning, characterization of toll-like receptor 9 in Japanese flounder, Paralichthys olivaceus. Mol Immunol 44:1845–1853

    Article  PubMed  CAS  Google Scholar 

  • Takita T (1974) Studies on the early life history of Nibea albiflora (Richardson) in Ariake sound. Bull Fac Fish Nagasaki Univ 38:1–55

    Google Scholar 

  • Toda H, Saito Y, Koike T et al (2011) Conservation of characteristics and functions of CD4 positive lymphocytes in a teleost fish. Dev Comp Immunol 35:650–660

    Article  PubMed  CAS  Google Scholar 

  • Torstensen B, Nanton D, Olsvik P, Sundvold H, Stubhaug I (2009) Gene expression of fatty acid-binding proteins, fatty acid transport proteins (cd36 and FATP) and β-oxidation-related genes in Atlantic salmon (Salmo salar L.) fed fish oil or vegetable oil. Aquac Nutr 15:440–451

    Article  CAS  Google Scholar 

  • Watts M, Munday BL, Burke CM (2001) Immune responses of teleost fish. Aust Vet J 79:570–574

    Article  PubMed  CAS  Google Scholar 

  • Xia JH, Wan ZY, Ng ZL et al (2014) Genome-wide discovery and in silico mapping of gene-associated SNPs in Nile tilapia. Aquaculture 432:67–73

    Article  CAS  Google Scholar 

  • Xiao SJ, Han ZF, Wang PP, Han F, Liu Y, Li JT, Wang ZY (2015a) Functional marker detection and analysis on a comprehensive transcriptome of large yellow croaker by next generation sequencing. PLoS ONE 10:e0124432

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xiao S, Wang P, Zhang Y, Fang L, Liu Y, Li JT, Wang ZY (2015b) Gene map of large yellow croaker (Larimichthys crocea) provides insights into teleost genome evolution and conserved regions associated with growth. Sci Rep. https://doi.org/10.1038/srep18661

    Article  PubMed  PubMed Central  Google Scholar 

  • Xiao S, Wang P, Dong L, Zhang Y, Han Z, Wang Q, Wang Z (2016) Whole-genome single-nucleotide polymorphism (SNP) marker discovery and association analysis with the eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) content by genotyping-by-sequencing (GBS) in teleost Larimichthys crocea. PeerJ Preprints 4:e2116v2111

    Google Scholar 

  • Xing S, Shao C, Liao X, Tian Y, Chen S (2009) Isolation and characterization of polymorphic microsatellite loci from a dinucleotide-enriched genomic library of spotted maigre (Nibea albiflora). Conserv Genet 10:789–791

    Article  CAS  Google Scholar 

  • Yang BY, Greene M, Chen TT (1999) Early embryonic expression of the growth hormone family protein genes in the developing rainbow trout, Oncorhynchus mykiss. Mol Reprod Dev 53:127–134

    Article  PubMed  CAS  Google Scholar 

  • Yang X, Liu D, Liu F et al (2013) HTQC: a fast quality control toolkit for Illumina sequencing data. BMC Bioinform 14:1

    Article  CAS  Google Scholar 

  • Yi ZA, Lin WW, Stunz LL, Bishop GA (2014) Roles for TNF-receptor associated factor 3 (TRAF3) in lymphocyte functions. Cytokine Growth Factor Rev 25:147–156

    Article  PubMed  CAS  Google Scholar 

  • Zhan W, Chen R, Laghari M, Xu D, Mao G, Shi H, Lou B (2016) Characterization of Nibea albiflora transcriptome: sequencing, de novo assembly, annotation and comparative genomics. Pak J Zool 48:427–434

    CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by grants from the Key Projects of the Xiamen Southern Ocean Research Centre (14GZY70NF34), the Key Projects of the Fujian Science and Technology (2014N5011) and the Projects of the Fujian Science and Technology (2014R0110).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi Yong Wang.

Ethics declarations

Conflict of interest

Z.H. declares that he does not have conflict of interest. S.X. declares that he does not have conflict of interest. W.L. declares that he does not have conflict of interest. K.Y. declares that he does not have conflict of interest. Z.W. declares that he does not have conflict of interest.

Ethics approval

The study was approved by the Animal Care and Use Committee of Fisheries College of Jimei University, and all experimental procedures were conducted in conformity with institutional guidelines for the care and use of laboratory animals.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 96 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Z., Xiao, S., Li, W. et al. The identification of growth, immune related genes and marker discovery through transcriptome in the yellow drum (Nibea albiflora). Genes Genom 40, 881–891 (2018). https://doi.org/10.1007/s13258-018-0697-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-018-0697-x

Keywords

Navigation