Skip to main content
Log in

Genetic analysis of gynogenetic and common populations of Verasper moseri using SSR markers

  • Published:
Wuhan University Journal of Natural Sciences

Abstract

The genetic structure and variation of the artificial meio- gynogenetic population and common population of barfin flounder (Verasper moseri) were analyzed using eight microsatellite markers. A total of 29 alleles were detected, of which 23 alleles were in the artificial gynogenetic population while 29 alleles were in the control group. The average observed heterozygosity (H O) of eight loci in the control group (0.526 8) was several times higher than that (0.185 8) in the gynogenetic population. The results indicate that the genetic diversity of the control group was much higher than that of the gynogenetic population of barfin flounder (Verasper moseri). Most loci significantly deviated from Hardy-Weinberg equilibrium (HWE) after Bonferroni correction (p < 0.005 56) in the gynogenetic population, while four loci deviated from HWE in the control group. The coefficient of gene differentiation (G ST) was 0.131 0, and the genetic distance was 0.171 8 between the two populations, suggesting a significant genetic differentiation between the two populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mair G C, Scott A G, Penman D J, et al. Sex Determination in the Genus Oreochromis, 1. Sex Reversal, Gynogenesis and Triploidy in O. niloticus (L.) Steindachner [J]. Theor Appl. Genet, 1991, 82: 144–152.

    Article  Google Scholar 

  2. Armstrong J B. Genetic Mapping in the Mexican Axolotl, Ambystoma mexicanum [J]. Can J Genet Cytol, 1984, 26(1): 1–6.

    Google Scholar 

  3. Felip A, Zanuy S, Carrillo M, et al. Induction of Triploidy and Gynogenesis in Teleost Fish with Emphasis on Marine Species [J]. Genetica, 2001, 111: 175–195.

    Article  Google Scholar 

  4. Komen J, Duynhouwer J, Richter C J J, et al. Gynogenesis in Common Carp (Cyprinus carpio L.). 1. Effects of Genetic Manipulation of Sexual Products and Incubation Conditions of Eggs [J]. Aquaculture, 1988, 69: 227–239.

    Article  Google Scholar 

  5. Stanley J G. Morphology of Androgenetic and Gynogenetic Grass Carp (Ctenophryngodon idellus) [J]. J Fish Biol, 1976, 9: 523–528.

    Article  Google Scholar 

  6. Lou Y D, Purdom C E. Diploid Gynogenesis Induced by Hydrostatic Pressure in Rainbow Trout, Salmo gairdneri [J]. J. Fish Biol, 1984, 24: 665–670.

    Article  Google Scholar 

  7. Peruzzi S, Chatain B. Induction of Tetraploid Gynogenesis in the European Sea Bass(Dicentrarchus labrax L.) [J]. Genetica, 2003, 119(2): 225–228.

    Article  Google Scholar 

  8. Streisinger G, Walker C, Dower N. Production of Homozygous Diploid Zebrafish [J]. Nature, 1981, 291: 293–296.

    Article  Google Scholar 

  9. Yang L, Yang S T, Wei X H, et al. Genetic Diversity among Different Clones of the Gynogenetic Silver Crucian Carp, Carassius auratus gibelio, Revealed by Transferring and Isozyme Markers [J]. Biochemical Genetics, 2001, 39(5–6): 213–225.

    Article  MATH  Google Scholar 

  10. Zhou L, Wang Y, Gui J F. Analysis of Genetic Heterogeneity among Five Gynogenetic Clones of Silver Crucian Carp, Carassius auratus gibelio Bloch, Based on Detection of RAPD Molecular Markers [J]. Cytogenet Cell Genet, 2000, 88: 133–139.

    Article  Google Scholar 

  11. Castro J, Bouza C, Sanchez L, et al. Gynogenesis Assessment Using Microsatellite Genetic Markers in Turbot (Scophthalmus maximus) [J]. Marine Biotechnology, 2003, 5: 584–592.

    Article  Google Scholar 

  12. Chen S L, Tian Y S, Yang J F, et al. Artificial Gynogenesis and Sex Determination in Half-Smooth Tongue Sole (Cynoglossus semilaevis) [J]. Marine Biotechnology, 2009, 11: 243–251.

    Article  Google Scholar 

  13. Ma H Y, Bi J Z, Shao C W, et al. Development of 40 Microsatellite Markers and Their Application to Genetic Diversity Analysis of Cultured and Wild Populations of Verasper moser Spotted Halibut (Verasper variegatus) [EB/OL]. [2009-03-02]. http://www3.interscience.wiley.com/journal/119878164/issue .

  14. Felip A, Martinez-Rodriguez G, Piferrer F, et al. AFLP Analysis Confirms Exclusive Maternal Genomic Contribution of Meiogynogenetic Sea Bass (Dicentrarchus labrax L.) [J]. Marine Biotechnology, 2000, 2: 301–306.

    Google Scholar 

  15. Ma Hongyu, Chen Songlin, Tian Yongsheng, et al. Genetic Diversity of Introduced Barfin Flounder (Verasper moseri) Populations by AFLP Analysis [J]. Journal of Fisheries of China, 2008, 32(3): 321–326 (Ch).

    Google Scholar 

  16. Hamada H, Petrino M G, Kakunaga T. A Novel Repeated Element with Z-DNA-Forming Potential Is Widely Found in Evolutionarily Diverse Eukaryotic Genomes [J]. Proc Natl Acad Sci USA, 1982, 79: 6465–6469.

    Article  Google Scholar 

  17. Vos P, Hogers R, Bleeker M, et al. AFLP: A New Technique for DNA Fingerprinting [J]. Nucl Acids Res, 1995, 23: 4407–4414.

    Article  Google Scholar 

  18. Ma Hongyu, Chen Songlin, Li Jing, et al. Development of Female-Specific AFLP Marker CseF783 and Its Application in Genetic Sex Identification in Half-Smooth Tongue Sole (Cynoglossus semilaevis) [J]. Hereditas, 2009, 31(1): 88–94(Ch).

    Google Scholar 

  19. Liu Y G, Chen S L, Li B F. Assessing the Genetic Structure of Three Japanese Flounder (Paralichthys olivaceus) Stocks by Microsatellite Markers [J]. Aquaculture, 2005, 243: 103–111.

    Article  Google Scholar 

  20. Chen S L, Ma H Y, Jiang Y, et al. Isolation and Characterization of Polymorphic Microsatellite Loci from an EST-Library of Turbot (Scophthalmus maximus) and Cross-Species Amplification [J]. Molecular Ecology Notes, 2007, 7: 848–850.

    Article  Google Scholar 

  21. Ma H Y, Chen S L, Liao X L, et al. Isolation and Characterization of Polymorphic Microsatellite Loci from a Dinucleotide-Enriched Genomic Library of Obscure Puffer (Takifugu obscurus) and Cross-Species Amplification [EB/OL]. [2009-01-16]. http://springer.lib.tsinghua.edu.cn/content/105709/?Content + Status = Accepted&sort=p_OnlineDate&sortorder=desc&v=condensed&o=320.

  22. Chistiakov D A, Hellemans B, Haley C S, et al. A Microsatellite Linkage Map of the European Sea Bass Dicentrarchus labrax L. [J]. Genetics, 2005, 170: 1821–1826.

    Article  Google Scholar 

  23. Lee B Y, Hulata G, Kocher T D. Two Unlinked Loci Controlling the Sex of Blue Tilapia (Oreochromis aureus) [J]. Heredity, 2004, 92: 543–549.

    Article  Google Scholar 

  24. Ortega-Villaizan Romo M, Nakajima M, Taniguchi N. Isolation and Characterization of Microsatellite DNA Markers in the Rare Species Barfin Flounder (Verasper moseri) and Its Closely Related Species Spotted Halibut (V. variegatus) [J]. Molecular Ecology Notes, 2003, 3: 629–631.

    Article  Google Scholar 

  25. Ortega-Villaizan Romo M, Aritaki M, Suzuki S, et al. Genetic Population Evaluation of Two Closely Related Flatfish Species, the Rare Barfin Flounder and Spotted Halibut, along the Japanese Coast [J]. Fisheries Science, 2006, 72: 556–567.

    Article  Google Scholar 

  26. Ortega-Villaizan Romo M, Suzuki S, Nakajima M, et al. Genetic Evaluation of Interindividual Relatedness for Brood-stock Management of the Rare Species Barfin Flounder Verasper moseri Using Microsatellite DNA Markers [J]. Fisheries Science, 2006, 72: 33–39.

    Article  Google Scholar 

  27. Wright S. Variability within and among Natural Populations [M]. Chicago: The University of Chicago Press, 1978: 565.

    Google Scholar 

  28. Yeh F C, Yang R C, Boyle T. POPGENE, version 1.31: Microsoft Windows-Based Freeware for Population Genetic Analysis [EB/OL].[2008-09-10]. http://www.ualberta.ca/:_fyeh/ .1999.

  29. Nei M. Genetic Distance between Populations [J]. Am Nat, 1972, 106: 283–292.

    Article  Google Scholar 

  30. Rice W R. Analyzing Tables of Statistical Tests [J]. Evolution, 1989, 43: 223–225.

    Article  Google Scholar 

  31. Aritaki M, Suzuki S, Watanabe K. Morphological Development and Growth of Laboratory-Reared Barfin Flounder Verasper moseri [J]. Nippon Suisan Gakkaishi, 2000, 66(3): 446–453.

    Google Scholar 

  32. Taniguchi N, Kijima A, Fukai J. High Heterozygosity at Gpi-1 in Gynogenetic Diploids and Triploids of Ayu Plecogossus altivelis [J]. Nippon Suisan Gakkaishi, 1987, 53(5): 845–850.

    Google Scholar 

  33. Xu Cheng, Wang Keling, Xu Yongli, et al. Recombination and Expression of Paternal Gene of Isozymes in Gynogenetic Olive Flounder [J]. Oceanol Limnolo Sin, 2002, 33(1): 62–67 (Ch).

    Google Scholar 

  34. Zhu Xiaochen, Liu Haijin, Sun Xiaowen, et al. Assessment of Homozygosity in Gynogenetic Diploid Using Microsatellite Markers in Japanese Flounder (Paralichthys olivaceus) [J]. Zoological Research, 2006, 27(1): 63–67 (Ch).

    Google Scholar 

  35. Francescon A, Barbaro A, Bertotto D, et al. Assessment of Homozygosity and Fertility in Meiotic Gynogens of the European Sea Bass (Dicentrachus labrax L.) [J]. Aquaculture, 2005, 243: 93–102.

    Article  Google Scholar 

  36. Wright S. The Genetical Structure of Populations [J]. Annals. of Eugenics, 1951, 15: 323–334.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Songlin Chen.

Additional information

Foundation item: Supported by the National High Technology Research and Development Program of China (863 Program) (2006AA10A403), Shandong Genetic Improvement Key Project for Agricultural Organism, and Taishan Scholar Project of Shandong Province

Biography: MA Hongyu (1979–), male, Ph. D. candidate, research direction: marine biotechnology and molecular genetics.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, H., Yang, J., Su, P. et al. Genetic analysis of gynogenetic and common populations of Verasper moseri using SSR markers. Wuhan Univ. J. Nat. Sci. 14, 267–273 (2009). https://doi.org/10.1007/s11859-009-0315-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11859-009-0315-5

Key words

CLC number

Navigation