Skip to main content

Advertisement

Log in

Optimal b-values for diffusion kurtosis imaging in invasive ductal carcinoma versus ductal carcinoma in situ breast lesions

  • Technical Paper
  • Published:
Australasian Physical & Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

Diffusion kurtosis imaging (DKI) is a diffusion-weighted MRI technique that probes the non-Gaussian diffusion of water molecules within biological tissues. The purpose of this study was to investigate the DKI model optimal b-values combinations in invasive ductal carcinoma (IDC) versus ductal carcinoma in situ (DCIS) breast lesions. The study included 114 malignant breast lesions (64 IDC and 50 DCIS). Patients underwent a breast MRI examination which included a diffusion-weighted sequence (b = 0–3000 s/mm2). For each lesion, the b-values were combined among each other (109 combinations) and each mean kurtosis (MK) parameter was obtained. Differences between the lesion groups and b-values combinations were assessed. Also, the diagnostic performance of the combinations was determined through receiver operating characteristic (ROC) curve analysis, and compared. Root mean square error (RMSE) was also obtained. All the b-values combinations showed significant differences between the lesion groups (p < 0.05). The combination 0, 50, 200, 750, 1000, 2000 s/mm2 showed the best performance (AUC = 0.930, sensitivity = 95.3%, specificity = 82.0%, accuracy = 89.5%), with a RMSE of 17.65. The b-values combinations with the worst performance were composed of only high or ultra-high b-values, or with b = 1000 s/mm2 as the maximum b-value. Better results were obtained when zero b-value was included in the DKI model fitting with at least one b-value below 1000 s/mm2 and one b-value above 1000 s/mm2 (conserving b = 1000 s/mm2). Six was the optimal number of b-values, nonetheless other combinations with less b-values may be considered, but with a consequent diagnostic performance loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jensen JH, Helpern JA (2010) MRI quantification of non-Gaussian water diffusion by kurtosis analysis. NMR Biomed 23:698–710. https://doi.org/10.1002/nbm.1518

    Article  PubMed  PubMed Central  Google Scholar 

  2. Jensen JH, Helpern JA, Ramani A et al (2005) Diffusional kurtosis imaging: the quantification of non-gaussian water diffusion by means of magnetic resonance imaging. Magn Reson Med 53:1432–1440. https://doi.org/10.1002/mrm.20508

    Article  PubMed  Google Scholar 

  3. Rosenkrantz AB, Padhani AR, Chenevert TL et al (2015) Body diffusion kurtosis imaging: basic principles, applications, and considerations for clinical practice. J Magn Reson Imaging 42:1190–1202. https://doi.org/10.1002/jmri.24985

    Article  PubMed  Google Scholar 

  4. Yan X, Zhou M, Ying L et al (2013) Evaluation of optimized b-value sampling schemas for diffusion kurtosis imaging with an application to stroke patient data. Comput Med Imaging Graph 37:272–280. https://doi.org/10.1016/j.compmedimag.2013.04.007

    Article  PubMed  PubMed Central  Google Scholar 

  5. Yablonskiy DA, Sukstanskii AL (2010) Theoretical models of the diffusion weighted MR signal. NMR Biomed 23:661–681. https://doi.org/10.1002/nbm.1520

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wu EX, Cheung MM (2010) MR diffusion kurtosis imaging for neural tissue characterization. NMR Biomed 23:836–848. https://doi.org/10.1002/nbm.1506

    Article  PubMed  Google Scholar 

  7. Goshima S, Kanematsu M, Noda Y et al (2015) Diffusion kurtosis imaging to assess response to treatment in hypervascular hepatocellular carcinoma. Am J Roentgenol 204:W543–W549. https://doi.org/10.2214/AJR.14.13235

    Article  Google Scholar 

  8. Filli L, Wurnig M, Nanz D et al (2014) Whole-body diffusion kurtosis imaging. Invest Radiol 49:773–778. https://doi.org/10.1097/RLI.0000000000000082

    Article  PubMed  Google Scholar 

  9. Marrale M, Collura G, Brai M et al (2016) Physics, techniques and review of neuroradiological applications of diffusion kurtosis imaging (DKI). Clin Neuroradiol 26:391–403. https://doi.org/10.1007/s00062-015-0469-9

    Article  CAS  PubMed  Google Scholar 

  10. Budjan J, Sauter EA, Zoellner FG et al (2018) Diffusion kurtosis imaging of the liver at 3 Tesla: in vivo comparison to standard diffusion-weighted imaging. Acta radiol 59:18–25. https://doi.org/10.1177/0284185117706608

    Article  PubMed  Google Scholar 

  11. Li HM, Zhao SH, Qiang JW et al (2017) Diffusion kurtosis imaging for differentiating borderline from malignant epithelial ovarian tumors: a correlation with Ki-67 expression. J Magn Reson Imaging 46:1499–1506. https://doi.org/10.1002/jmri.25696

    Article  PubMed  Google Scholar 

  12. Rosenkrantz AB, Sigmund EE, Johnson G et al (2012) Prostate cancer: feasibility and preliminary experience of a diffusional kurtosis model for detection and assessment of aggressiveness of peripheral zone cancer. Radiology 264:126–135. https://doi.org/10.1148/radiol.12112290

    Article  PubMed  Google Scholar 

  13. Pentang G, Lanzman RS, Heusch P et al (2014) Diffusion kurtosis imaging of the human kidney: a feasibility study. Magn Reson Imaging 32:413–420. https://doi.org/10.1016/j.mri.2014.01.006

    Article  PubMed  Google Scholar 

  14. Suo S, Chen X, Ji X et al (2015) Investigation of the non-gaussian water diffusion properties in bladder cancer using diffusion kurtosis imaging: a preliminary study. J Comput Assist Tomogr 39:281–285. https://doi.org/10.1097/.0000000000000197

    Article  PubMed  Google Scholar 

  15. Cui Y, Yang X, Du X et al (2017) Whole-tumour diffusion kurtosis MR imaging histogram analysis of rectal adenocarcinoma: Correlation with clinical pathologic prognostic factors. Eur Radiol. https://doi.org/10.1007/s00330-017-5094-3

    Article  PubMed  PubMed Central  Google Scholar 

  16. Huang L, Li X, Huang S et al (2017) Diffusion kurtosis MRI versus conventional diffusion-weighted imaging for evaluating inflammatory activity in Crohn’s disease. J Magn Reson Imaging. https://doi.org/10.1002/jmri.25768

    Article  PubMed  PubMed Central  Google Scholar 

  17. Borlinhas F, Lacerda L, Andrade A, Ferreira HA (2012) Diffusional kurtosis as a biomarker of breast tumors—C-1369. European Congress of Radiology. European Society of Radiology, Wien, Austria, pp 1–20. https://doi.org/10.1594/ecr2012/C-1369

    Chapter  Google Scholar 

  18. Borlinhas F (2012) Quantificação da Difusão na Ressonância Magnética da mama—ADC e Kurtosis. Escola Superior de Tecnologia da Saúde de Lisboa (ESTESL). http://hdl.handle.net/10400.21/1728. Accessed 20 Setembro 2018

  19. Wu D, Li G, Zhang J et al (2014) Characterization of breast tumors using diffusion kurtosis imaging (DKI). PLoS ONE 9:e113240. https://doi.org/10.1371/journal.pone.0113240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nogueira L, Brandão S, Matos E et al (2014) Application of the diffusion kurtosis model for the study of breast lesions. Eur Radiol 24:1197–1203. https://doi.org/10.1007/s00330-014-3146-5

    Article  PubMed  Google Scholar 

  21. Bickelhaupt S, Jaeger PF, Laun FB et al (2018) Radiomics based on adapted diffusion kurtosis imaging helps to clarify most mammographic findings suspicious for cancer. Radiology. https://doi.org/10.1148/radiol.2017170273

    Article  PubMed  Google Scholar 

  22. Sun K, Chen X, Chai W et al (2015) Breast cancer: diffusion kurtosis MR imaging—diagnostic accuracy and correlation with clinical-pathologic factors. Radiology 277:46–55. https://doi.org/10.1148/radiol.15141625

    Article  PubMed  Google Scholar 

  23. Christou A, Ghiatas A, Priovolos D et al (2017) Accuracy of diffusion kurtosis imaging in characterization of breast lesions. Br J Radiol 90:20160873. https://doi.org/10.1259/bjr.20160873

    Article  PubMed  PubMed Central  Google Scholar 

  24. Huang Y, Lin Y, Hu W et al (2018) Diffusion kurtosis at 3.0T as an in vivo imaging marker for breast cancer characterization: correlation with prognostic factors. J Magn Reson Imaging. https://doi.org/10.1002/jmri.26249

    Article  PubMed  PubMed Central  Google Scholar 

  25. Woodhams R, Ramadan S, Stanwell P et al (2011) Diffusion-weighted imaging of the breast: principles and clinical applications. RadioGraphics 31:1059–1084. https://doi.org/10.1148/rg.314105160

    Article  PubMed  Google Scholar 

  26. Le Bihan D (2013) Apparent diffusion coefficient and beyond: what diffusion MR imaging can tell us about tissue structure. Radiology 268:318–322. https://doi.org/10.1148/radiol.13130420

    Article  PubMed  Google Scholar 

  27. Partridge SC, McDonald ES (2013) Diffusion weighted MRI of the breast: protocol optimization, guidelines for interpretation, and potential clinical applications. Magn Reson Imaging Clin N Am 21:601–624. https://doi.org/10.1016/j.mric.2013.04.007

    Article  PubMed  PubMed Central  Google Scholar 

  28. Poot DHJ, den Dekker AJ, Achten E et al (2010) Optimal experimental design for diffusion kurtosis imaging. IEEE Trans Med Imaging 29:819–829. https://doi.org/10.1109/TMI.2009.2037915

    Article  PubMed  Google Scholar 

  29. Chuhutin A, Hansen B, Jespersen SN (2017) Precision and accuracy of diffusion kurtosis estimation and the influence of b-value selection. NMR Biomed 30:1–14. https://doi.org/10.1002/nbm.3777

    Article  Google Scholar 

  30. Padhani AR, Liu G, Mu-Koh D et al (2009) Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia 11:102–125. https://doi.org/10.1593/neo.81328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fukunaga I, Hori M, Masutani Y et al (2013) Effects of diffusional kurtosis imaging parameters on diffusion quantification. Radiol Phys Technol 6:343–348. https://doi.org/10.1007/s12194-013-0206-5

    Article  PubMed  PubMed Central  Google Scholar 

  32. Koh DM, Collins DJ, Orton MR (2011) Intravoxel incoherent motion in body diffusion-weighted MRI: reality and challenges. Am J Roentgenol 196:1351–1361. https://doi.org/10.2214/AJR.10.5515

    Article  Google Scholar 

  33. Chou M-C, Ko C-W, Chiu Y-H et al (2017) Effects of B value on quantification of rapid diffusion kurtosis imaging in normal and acute ischemic brain tissues. J Comput Assist Tomogr 41:868–876. https://doi.org/10.1097/RCT.0000000000000621

    Article  PubMed  Google Scholar 

  34. Yokosawa S, Sasaki M, Bito Y et al (2015) Optimization of scan parameters to reduce acquisition time for diffusion kurtosis imaging at 1.5 T. Magn Reson Med Sci 15:41–48. https://doi.org/10.2463/mrms.2014-0139

    Article  PubMed  Google Scholar 

  35. Mazzoni LN, Lucarini S, Chiti S et al (2014) Diffusion-weighted signal models in healthy and cancerous peripheral prostate tissues: comparison of outcomes obtained at different b-values. J Magn Reson Imaging 39:512–518. https://doi.org/10.1002/jmri.24184

    Article  PubMed  Google Scholar 

  36. Merisaari H, Toivonen J, Pesola M et al (2015) Diffusion-weighted imaging of prostate cancer: effect of b-value distribution on repeatability and cancer characterization. Magn Reson Imaging 33:1212–1218. https://doi.org/10.1016/j.mri.2015.07.004

    Article  PubMed  Google Scholar 

  37. Merisaari H, Jambor I (2015) Optimization of b-value distribution for four mathematical models of prostate cancer diffusion-weighted imaging using b-values up to 2000 s/mm2: simulation and repeatability study. Magn Reson Med 73:1954–1969. https://doi.org/10.1002/mrm.25310

    Article  PubMed  Google Scholar 

  38. Association of Breast Surgery at BASO (2009) Surgical guidelines for the management of breast cancer. Eur J Surg Oncol 35:S1–S22. https://doi.org/10.1016/j.ejso.2009.01.008

    Article  Google Scholar 

  39. Li T, Yu T, Li L et al (2018) Use of diffusion kurtosis imaging and quantitative dynamic contrast-enhanced MRI for the differentiation of breast tumors. J Magn Reson Imaging 48:1358–1366. https://doi.org/10.1002/jmri.26059

    Article  PubMed  Google Scholar 

  40. DeLong ER, DeLong DM, Clarke-Pearson DL (1988) Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44:837–845

    Article  CAS  PubMed  Google Scholar 

  41. Hu F, Tang W, Sun Y et al (2017) The value of diffusion kurtosis imaging in assessing pathological complete response to neoadjuvant chemoradiation therapy in rectal cancer: a comparison with conventional diffusion-weighted imaging. Oncotarget 8:75597–75606. https://doi.org/10.18632/oncotarget.17491

    Article  PubMed  PubMed Central  Google Scholar 

  42. Borlinhas F, Nogueira L, Brandão S, et al (2015) Diffusion kurtosis breast imaging model—which should be the highest b-value? In: ISMRM 24th annual meeting—2015, proceedings of the International Society for Magnetic Resonance, 24. Singapore, p 3017

  43. Lu H, Jensen JH, Ramani A, Helpern JA (2006) Three-dimensional characterization of non-gaussian water diffusion in humans using diffusion kurtosis imaging. NMR Biomed 19:236–247. https://doi.org/10.1002/nbm.1020

    Article  PubMed  Google Scholar 

  44. Partridge SC, Nissan N, Rahbar H et al (2017) Diffusion-weighted breast MRI: clinical applications and emerging techniques. J Magn Reson Imaging 45:337–355. https://doi.org/10.1002/jmri.25479

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This paper is supported by Fundação para a Ciência e a Tecnologia – FCT / MEC (PIDDAC) – under the Strategic Programme UID/BIO/00645/2013. The authors thank the participants of this study, and the Radiology Department staff of Instituto Português de Oncologia de Lisboa Francisco Gentil, E.P.E., Lisboa, Portugal, involved in this study. The authors also thank Nuno Loução for assistance with the MRI sequence.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filipa Borlinhas.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. This article does not contain any studies with animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Table 4.

Table 4 Complete ROC curve results for each of the 109 b-values combination in test

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borlinhas, F., Conceição, R.C. & Ferreira, H.A. Optimal b-values for diffusion kurtosis imaging in invasive ductal carcinoma versus ductal carcinoma in situ breast lesions. Australas Phys Eng Sci Med 42, 871–885 (2019). https://doi.org/10.1007/s13246-019-00773-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-019-00773-2

Keywords

Navigation