Skip to main content
Log in

Water equivalence evaluation of PRESAGE® formulations for megavoltage electron beams: a Monte Carlo study

  • Scientific Paper
  • Published:
Australasian Physical & Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

To investigate the radiological water equivalency of three different formulations of the radiochromic, polyurethane based dosimeter PRESAGE® for three dimensional (3D) dosimetry of electron beams. The EGSnrc/BEAMnrc Monte Carlo package was used to model 6–20 MeV electron beams and calculate the corresponding doses delivered in the three different PRESAGE® formulations and water. The depth of 50 % dose and practical range of electron beams were determined from the depth dose calculations and scaling factors were calculated for these electron beams. In the buildup region, a 1.0 % difference in dose was found for all PRESAGE® formulations relative to water for 6 and 9 MeV electron beams while the difference was negligible for the higher energy electron beams. Beyond the buildup region (at a depth range of 22–26 mm for the 6 MeV beam and 38 mm for the 9 MeV beam), the discrepancy from water was found to be 5.0 % for the PRESAGE® formulations with lower halogen content than the original formulation, which was found to have a discrepancy of up to 14 % relative to water. For a 16 MeV electron beam, the dose discrepancy from water increases and reaches about 7.0 % at 70 mm depth for the lower halogen content PRESAGE® formulations and 20 % at 66 mm depth for the original formulation. For the 20 MeV electron beam, the discrepancy drops to 6.0 % at 90 mm depth for the lower halogen content formulations and 18 % at 85 mm depth for the original formulation. For the lower halogen content PRESAGE®, the depth of 50 % dose and practical range of electrons differ from water by up to 3.0 %, while the range of differences from water is between 6.5 and 8.0 % for the original PRESAGE® formulation. The water equivalent depth scaling factor required for the original formulation of PRESAGE® was determined to be 1.07–1.08, which is larger than that determined for the lower halogen content formulations (1.03) over the entire beam energy range of electrons. All three of the PRESAGE® formulations studied require a depth scaling factor to convert depth in PRESAGE® to water equivalent depth for megavoltage electron beam dosimetry. Compared to the original PRESAGE® formulation, the lower halogen content formulations require a significantly smaller scaling factor and are thus recommended over the original PRESAGE® formulation for electron beam dosimetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Khan FM (2010) Electron beam therapy. In: Khan FM (edn) The physics of radiation therapy. Lippincott Williams and Wilkins, Baltimore, pp 264–312

  2. Strydom W, Parker W, Olivares M (2005) Electron beams: physical and clinical aspects. In: Podgorsak EB (edn) Radiation oncology physics: a handbook for teachers and students. International Atomic Energy Agency (IAEA), Vienna, pp 273–299

  3. Hogstorm KR, Almond PR (2006) Review of electron beam therapy physics. Phys Med Biol 51:R455–R489

    Article  Google Scholar 

  4. Svensson H et al (1984) Radiation dosimetry: electron beams with energies between 1 and 50 MeV, ICRU report no. 35. ICRU Report, Bethesda

  5. White DR et al (1989) Tissue substitutes in radiation dosimetry and measurement, ICRU report no. 44. ICRU report

  6. Andreo P et al (1995) The use of plane parallel ionization chambers in high energy electron and photon beams. An international code of practice for dosimetry, IAEA TRS-381. International Atomic Energy Agency (IAEA), Stockholm

  7. Nisbet A, Thwaites DI (1998) An evaluation of epoxy resin phantom materials for electron dosimetry. Phys Med Biol 43:1523–1528

    Article  PubMed  CAS  Google Scholar 

  8. Mihailescu D, Borcia C (2006) Water equivalency of some plastic materials used in electron dosimetry: a Monte Carlo investigation. Roman Rep Phys 58(4):415–425

    CAS  Google Scholar 

  9. McEwen MR, DuSautoy AR (2003) Characterization of the water equivalent material WTe for use in electron beam dosimetry. Phys Med Biol 48:1885–1893

    Article  PubMed  CAS  Google Scholar 

  10. Casar B, Zdesar U, Robar V (2004) Evaluation of water equivalency of plastic water for high energy electron beams using IAEA TRS-398 Code of Practice. Radiol Oncol 38(1):55–60

    Google Scholar 

  11. Borcia C, Mihailescu D (2007) Are water equivalent materials used in electron beams dosimetry really water equivalent? Rom J Phys 53(7–8):851–863

    Google Scholar 

  12. Gorjiara T et al (2011) Radiological characterization and water equivalency of genipin gel for X-ray and electron beam dosimetry. Phys Med Biol 56:4685–4699

    Article  PubMed  Google Scholar 

  13. Tello VM, Tailor RC, Hanson WF (1995) How water equivalent are water-equivalent solid phantoms for output calibration of photon and electron beams? Med Phys 22(7):1177–1189

    Article  PubMed  CAS  Google Scholar 

  14. Ten Haken RK, Fraass BA (1987) Relative electron beam measurements: scaling depths in clear polystyrene to equivalent depths in water. Med Phys 14(3):410–413

    Article  PubMed  Google Scholar 

  15. Gorjiara T et al (2011) Investigation of radiological properties and water equivalency of PRESAGE® dosimeters. Med Phys 38(4):2265–2274

    Article  PubMed  CAS  Google Scholar 

  16. Brown S et al (2008) Radiological properties of the PRESAGE and PAGAT polymer dosimeters. Appl Radiat Isot 66(12):1970–1974

    Article  PubMed  CAS  Google Scholar 

  17. Venning AJ et al (2005) Radiological properties of normoxic polymer gel dosimeters. Med Phys 32(4):1047–1053

    Article  PubMed  CAS  Google Scholar 

  18. Guo PY, Adamovics JA, Oldham M (2006) Characterization of a new radiochromic three-dimensional dosimeter. Med Phys 33(5):1338–1345

    Article  PubMed  CAS  Google Scholar 

  19. Grant RL et al (2010) Three dimensional dosimetry of a beta emitting radionuclide using PRESAGE®. J Phys Conf Ser 250(1):012095

    Article  PubMed  Google Scholar 

  20. Doran S et al (2010) Electron dosimetry in the presence of small cavities. J Phys Conf Ser 250:012090

    Article  Google Scholar 

  21. Adamovics J, Maryanski MJ (2006) Characterisation of PRESAGE (TM): a new 3-D radiochromic solid polymer dosemeter for ionising radiation. Radiat Prot Dosimetry 120:107–112

    Article  PubMed  CAS  Google Scholar 

  22. Adamovics J, Maryanski MJ (2004) A new approach to radiochromic three-dimensional dosimetry-polyurethane. J Phys Conf Ser 3:172–175

    Article  CAS  Google Scholar 

  23. Baldock C et al (2010) Polymer gel dosimetry. Phys Med Biol 55(5):R1–R63

    Article  PubMed  CAS  Google Scholar 

  24. Sakhalkar HS et al (2009) A comprehensive evaluation of the PRESAGE/optical-CT 3D dosimetry system. Med Phys 36(1):71–82

    Article  PubMed  CAS  Google Scholar 

  25. Alqathami M et al (2012) Optimization of the sensitivity and stability of the PRESAGE™ dosimeter using trihalomethane radical initiators. Radiat Phys Chem 81:867–873

    Article  CAS  Google Scholar 

  26. Alqathami M et al (2012) Optimizing the sensitivity and radiological properties of the PRESAGE® dosimeter using metal compounds. Radiat Phys Chem 81(11):1688–1695

    Article  CAS  Google Scholar 

  27. Mostaar A et al (2010) A basic dosimetric study of PRESAGE: the effect of different amounts of fabricating components on the sensitivity and stability of the dosimeter. Phys Med Biol 55(3):903–912

    Article  PubMed  CAS  Google Scholar 

  28. Mostaar A et al (2011) Development and characterization of a novel PRESAGE formulation for radiotherapy applications. Appl Radiat Isot 69:1540–1545

    Article  PubMed  CAS  Google Scholar 

  29. Gorjiara T et al (2012) Water and tissue equivalence of a new PRESAGE® formulation for 3D proton beam dosimetry: a Monte Carlo study. Med Phys 39(11):7071–7079

    Google Scholar 

  30. Gorjiara T et al (2012) Monte Carlo water-equivalence study of two PRESAGE® formulations for proton beam dosimetry. In: The proceeding of IC3D Dose 2012—7th international conference on 3D radiation dosimetry. Sydney

  31. Gorjiara T et al (2010) Study of dosimetric water equivalency of PRESAGE® for megavoltage and kilovoltage X-ray beams. J Phys Conf Ser 250(1):012053

    Article  Google Scholar 

  32. Kawrakow I (2000) Accurate condensed history Monte Carlo simulation of electron transport. I. EGSnrc, the new EGS4 version. Med Phys 27(3):485–498

    Article  PubMed  CAS  Google Scholar 

  33. Rogers DWO (2006) Fifty years of Monte Carlo simulations for medical physics. Phys Med Biol 51(13):R287–R301

    Article  PubMed  CAS  Google Scholar 

  34. Khan FM et al (1991) Clinical electron beam dosimetry: report of AA radiation therapy committee task group no. 25. Med Phys 18(1):73–109

    Article  PubMed  CAS  Google Scholar 

  35. Gerbi BJ et al (2009) Recommendations for clinical electron beam dosimetry: supplement to the recommendations of task group 25. Med Phys 36:3239–3279

    Article  PubMed  Google Scholar 

  36. Price BT (1955) Ionization by relativistic particles. Rep Prog Phys 18:52–82

    Article  Google Scholar 

  37. Goldwasser EL, Mills FE, Hanson AO (1952) Ionization loss and straggling of fast electrons. Phys Rev 88(5):1137–1141

    Article  CAS  Google Scholar 

  38. Eidelman S et al (2004) Particle data group, review of particle physics. Phys Lett B 592(1–4):1–1109

    Google Scholar 

  39. Andreo P et al (2000) Absorbed dose determination in external beam radiotherapy, an international code of practice for dosimetry based on standards of absorbed dose to water, IAEA technical report series no. 398. International Atomic Energy Agency, Vienna

  40. George RE, Frost SV, Hartson-Eaton M (1986) Characteristics of electron beams from a medical microtron. Med Phys 13(4):533–538

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clive Baldock.

Appendix

Appendix

See Fig. 4.

Fig. 4
figure 4

Monte Carlo calculated depth dose curves and corresponding ion chamber measurements for a 6 MeV, b 12 MeV and c 20 MeV linac electron beams in water

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gorjiara, T., Kuncic, Z., Hill, R. et al. Water equivalence evaluation of PRESAGE® formulations for megavoltage electron beams: a Monte Carlo study. Australas Phys Eng Sci Med 35, 455–463 (2012). https://doi.org/10.1007/s13246-012-0174-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-012-0174-9

Keywords

Navigation