Skip to main content
Log in

Evaluation of the radiological properties of gel dosimeters and some human tissues based on experimental water and Monte Carlo simulation results

  • Original Paper - Particles and Nuclei
  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The aim of the present study is to obtain dose distributions of gel dosimeters at 6 and 18 MV photon energies and 6, 9, 12, 15, and 18 MeV electron energies using the GATE simulation program and to compare the resulting radiological features with the results experimentally obtained for liquid water and the international dose protocol suggested by the IAEA. Furthermore, in this study, the fast neutron removal cross-sections (ΣR) and attenuation lengths of gel dosimeters have been calculated. The effects on the absorbed dose distributions due to variation in the effective atomic number, mass attenuation coefficient, and effective photon energy are calculated for MAGIC, MAGAS, MAGAT, LMD1, LMD2, FAX, FXG, PAKAG formulations at irradiations with photon and electron beams. In the present study, mass attenuation coefficient values calculated for mono energies of 6 and 18 MV were compared with the values acquired by GATE, XCOM, PhyX-PSD, EpiXS, and XMuDat softwares for the same energies. In addition, spectrum values of the multi-energetic photon energies of 6 and 18 MV were drawn from the LINAC device database and introduced to GATE, and mass attenuation coefficient values of the gel dosimeters in the spectrum energy were calculated. In the 6 and 18 MV energy photon energy, MAGAS and FAX were found to have the lowest difference compared to water. Mean dose differences of MAGAS and FAX were obtained as 0.76 ± 0.69 and 1.74 ± 0.59, respectively. Mean dose differences of the gel dosimeters compared with water did not exceed 3% in both energy types. The study shows that, as a result of the simulation, software programs, the new approach, and theoretical calculations, it was found that the values obtained for \(\mathrm{effective atomic number}\) and mass attenuation coefficient were compatible with liquid water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. C. Garibaldi, B.A. Jereczek-Fossa, G. Marvaso, S. Dicuonzo, D.P. Rojas, F. Cattani, A. Starzynska, D. Ciardo, A. Surgo, M.C. Leonardi, R. Ricotti, Recent advances in radiation oncology. Ecancer Med Sci. 11, 785 (2017)

    Google Scholar 

  2. V. Mariotti, A. Gayol, T. Pianoschi, F. Mattea, V. Vedelago, P. Perez, M. Valente, M. Alva-Sanchez, Radiotherapy dosimetry parameters intercomparison among eight gel dosimeters by Monte Carlo simulation. Radiat. Phys. Chem. 190, 1–12 (2022)

    Article  Google Scholar 

  3. M. Valente, J. Vedelago, D. Chacon, F. Mattea, J. Velasquez, P. Perez, Water-equivalence of gel dosimeters for radiology medical imaging. Appl. Radiat. Isot. 141, 193–198 (2018)

    Article  Google Scholar 

  4. T. Kron, J. Lehmann, P.B. Greer, Dosimetry of ionizing radiation in modern radiation oncology. Phys. Med. Biol. 61, 167–205 (2016)

    Article  Google Scholar 

  5. Y. Watanabe, L. Warmington, N. Gopishankar, Three-dimensional radiation dosimetry using polymer gel and solid radiochromic polymer: from basics to clinical applications. World J. Radiol. 9, 112–125 (2017)

    Article  Google Scholar 

  6. B. Farhood, G. Geraily, S.M.M. Abtahi, A systematic review of clinical applications of polymer gel dosimeters in radiotherapy. Appl. Radiat. Isot. 143, 47–59 (2019)

    Article  Google Scholar 

  7. O. Moussous, T. Medjadj, A standard Fricke dosimeter compared to an ionization chamber used for dosimetric characterization of 60Co photon beam. Pol. J. Med. Phys. Eng. 22, 19–24 (2016)

    Article  Google Scholar 

  8. C. Baldock, Y. Deene, S. De Doran, G. Ibbott, A. Jirasek, M. Lepage, K.B. McAuley, M. Oldham, L.J. Schreiner, Polymer gel dosimetry. Phys. Med. Biol. 55, R1–R63 (2010)

    Article  Google Scholar 

  9. K. Adinehvand, F.N. Rahatabad, Monte-Carlo based assessment of MAGIC, MAGICAUG, PAGATUG and PAGATAUG polymer gel dosimeters for ovaries and uterus organ dosimetry in brachytherapy, nuclear medicine and Tele-therapy. Comput. Meth Prog Biomed. 159, 39–50 (2018)

    Article  Google Scholar 

  10. L.J. Schreiner, Review of Fricke gel dosimeters. J. Phys. Conf. Ser. 3, 9–21 (2004)

    Article  ADS  Google Scholar 

  11. M. Romero, M. Macchione, F. Mattea, M. Strumia, The role of polymers in analytical medical applications. A review. Microchem. J. 159, 105366 (2020)

    Article  Google Scholar 

  12. P. Sellakumar, E.J.J. Samuel, S.S. Supe, Water equivalence of polymer gel dosimeters. Radiat. Phys. Chem. 76(7), 1108–1115 (2007)

    Article  ADS  Google Scholar 

  13. G.S. Ibbott, Applications of gel dosimetry. J Phys. Conf Ser. 3, 58 (2004)

    Article  ADS  Google Scholar 

  14. A. Kaşkaş Öztepe, T. Şahmaran, Determination of the radiological properties of materials A new approximation method for calculation of the mass attenuation coefficients. Appl Rad Isot. 187, 110340 (2022)

    Article  Google Scholar 

  15. Andreo P. Burns DT, Hohlfeld K, Huq M, Kanai T, Laitano F, Smythe V, Vinckier S. 2006. Absorbed Dose Determination in External Beam Radiotherapy: An International Code of Practice for Dosimetry Based on Standards of Absorbed Dose to Water

  16. J.H. Hubbell, S.M. Seltzer, Tables of X-Ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients (National Institute of Standards and Technology, Gaithersburg, 1995)

    Google Scholar 

  17. M.J. Berger, J.H. Hubbell, XCOM: national institute of standards and technology. Gaithersburg 20899, 1987–1999 (1987)

    Google Scholar 

  18. M. Kurudirek, Water equivalence study of some phantoms based on effective photon energy effective atomic numbers and electron densities for clinical MV X-ray and Co-60 ℽ-ray beams. Nucl. Inst. Methods Phys. Res. A 701, 268–272 (2013)

    Article  ADS  Google Scholar 

  19. S.R. Manohara, S.M. Hanagodimath, K.S. Thind, L. Gerward, On the effective atomic number and electron density: a comprehensive set of formulas for all types of materials and energies above 1 keV. Nucl. Instrum. Methods B. 266(18), 3906–3912 (2008)

    Article  ADS  Google Scholar 

  20. Nowotny R. XMuDat: Photon attenuation data on PC. IAEANDS-195, 1998 Vienna, Austria. Available on https://www-nds.iaea.org/publications/iaea-nds/iaea-nds 0195.htm.

  21. D.F. Jackson, D.J. Hawkers, X-ray attenuation coefficient of the elements and mixtures. Phys. Rep. 70, 169–233 (1981)

    Article  ADS  Google Scholar 

  22. L.K. Zoller, Fast-neutron removal cross sections. Nucleonics 22, 128 (1964)

    Google Scholar 

  23. F.C. Hila, A.A. Astronomo, C.A.M. Dingle, J.F.M. Jecong, A.M.V. Javier-Hila, M.B.Z. Gili, C.V. Balderas, G.E.P. Lopez, N.R.D. Guillermo, A.V. Amorsolo, EpiXS: A Windows-based program for photon attenuation, dosimetry and shielding based on EPICS2017 (ENDF/B-VIII) and EPDL97 (ENDF/B-VI8). Radiat Phys Chem. 182, 109331 (2021)

    Article  Google Scholar 

  24. M.G. El-Samrah, A.M. El-Mohandes, A.M. El-Khayatt, S.E. Chidiac, MRCsC: a user-friendly software for predicting shielding effectiveness against fast neutrons. Rad Phys Chem 182, 109356 (2021)

    Article  Google Scholar 

  25. E. Şakar, Ö.F. Özpolat, B. Alım, M.I. Sayyed, M. Kurudirek, Phy-X / PSD: Development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Radiat. Phys. Chem. 166, 108496 (2020)

    Article  Google Scholar 

  26. M.F. Kaplan, Concrete Radiation Shielding (Longman Scientific and Technology, Limited, Essex, London, 1989)

    Google Scholar 

  27. A.B. Chilton, R.E. Faw, J.K. Shultis, Principles of Radiation Shielding (Prentice Hall, Englewood Cliffs, 1984)

    Google Scholar 

  28. O. Moussous, Effective atomic number and electron density determination for fricke gel dosimeters using different methods. J. Med Phys. 47, 105–108 (2022)

    Article  Google Scholar 

  29. H. Osman, H. Gümüs, Stopping power and CSDA range calculations of electrons and positrons over the 20 eV–1 GeV energy range in some water equivalent polymer gel dosimeters. Appl. Radiat. Isot. 179, 110024 (2022)

    Article  Google Scholar 

  30. S.A.A. Aziz, W.N.W.A. Rahman, R. Abdullah, A.Z. Harun, A. Zakaria, Optimization of magat with formaldehyde gel dosimeter for dose evaluation. Sci Technol Conf 978, 1–922069 (2013)

    Google Scholar 

  31. T. Gorjiara, R. Hill, Z. Kuncic, S. Bosi, C. Baldock, Water equivalence of micelle gels for x-ray beams. J. Phys: Conf. Ser. 444, 012024 (2013)

    Google Scholar 

  32. A. Rashidi, S.M.M. Abtahi, E. Saeedzadeh, M.E. Akbari, A new formulation of polymer gel dosimeter with reduced32 toxicity: Dosimetric characteristics and radiological properties. Z Med Phys. 30(3), 185–193 (2020)

    Article  Google Scholar 

  33. O.E. Duran-Nava, E.R. Torres-Garcia, R. Oros-Pantoja, J.O. Hernandez-Oviedo, Monte carlo simulation and experimental evaluation of dose distributions produced by a 6 MV medical linear accelerator. J. Phys: Conf. Ser. 1221, 012079 (2019)

    Google Scholar 

  34. T. Sahmaran, A. Kaskas, The effect of the trace elements concentrations on the cancerous and healthy tissues in radiotherapy. Int J Med Phys Clin Eng Rad Oncol 9, 110–124 (2020)

    Article  Google Scholar 

  35. S. Sathiyan, M. Ravikumar, Absolute dose determination in high-energy electron beams: Comparison of IAEA dosimetry protocols. J. Med. Phys. Assoc. Med. Phys. 33, 108 (2008)

    Google Scholar 

  36. C. Santos, W. Santos, A. Perini, C. Valeriano, W. Belinato, L. Caldas, L. Neves, Evaluation of polymer gels using Monte Carlo simulations. Radiat. Phys. Chem. 167, 108234 (2020)

    Article  Google Scholar 

  37. V.P. Singh, N.M. Badiger, Shielding efficiency of lead borate and nickel borate glasses for gamma rays and neutrons. Glass Phys Chem 41, 276–283 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Turan Şahmaran.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Şahmaran, T. Evaluation of the radiological properties of gel dosimeters and some human tissues based on experimental water and Monte Carlo simulation results. J. Korean Phys. Soc. 83, 527–536 (2023). https://doi.org/10.1007/s40042-023-00899-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40042-023-00899-3

Keywords

Navigation