Skip to main content
Log in

Uncertainty and sensitivity analysis for anisotropic inhomogeneous head tissue conductivity in human head modelling

  • Scientific Article
  • Published:
Australasian Physical & Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

The accuracy of an electroencephalography (EEG) forward problem partially depends on the head tissue conductivities. These conductivities are anisotropic and inhomogeneous in nature. This paper investigates the effects of conductivity uncertainty and analyses its sensitivity on an EEG forward problem for a spherical and a realistic head models. We estimate the uncertain conductivities using an efficient constraint based on an optimization method and perturb it by means of the volume and directional constraints. Assigning the uncertain conductivities, we construct spherical and realistic head models by means of a stochastic finite element method for fixed dipolar sources. We also compute EEG based on the constructed head models. We use a probabilistic sensitivity analysis method to determine the sensitivity indexes. These indexes characterize the conductivities with the most or the least effects on the computed outputs. These results demonstrate that conductivity uncertainty has significant effects on EEG. These results also show that the uncertain conductivities of the scalp, the radial direction of the skull and transversal direction in the white matter are more sensible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wang K, Zhu S, Mueller BA, Lim KO, Liu Z, He B (2008) A new method to derive white matter conductivity from diffusion tensor MRI. IEEE Trans Biomed Eng 55:2481–2486

    Article  PubMed  Google Scholar 

  2. Hallez H, Vanrumste B, Hese PV, D’Asseler Y, Lemahieu I, de Walle RV (2005) A finite difference method with reciprocity used to incorporate anisotropy in electroencephalogram dipole source localization. Phys Med Biol 50:3787–3806

    Article  PubMed  Google Scholar 

  3. Hallez H, Vanrumste B, Hese PV, Delputte S, Lemahieu I (2008) Dipole estimation errors due to differences in modelling anisotropic conductivities in realistic head models for EEG source analysis. Phys Med Biol 53:1877–1894

    Article  PubMed  Google Scholar 

  4. Wolters CH (2003) Influence of tissue conductivity inhomogeneity and anisotropy on EEG/MEG based source localization in the human brain. PhD dissertation, University of Leipzig, France

  5. Wolters CH, Anwander A, Tricoche X, Weinstein D, Koch MA, MacLeod RS (2006) Influence of tissue conductivity anisotropy on EEG/MEG field and return current computation in a realistic head model: a simulation and visualization study using high-resolution finite element modelling. NeuroImage 30:813–826

    Article  CAS  PubMed  Google Scholar 

  6. Gullmar D, Haueisen J, Wiselt M, Giebler F, Flemming L, Anwander A, Thomas RK, Wolters CH, Dumpelmann M, David ST, Jurgen RR (2006) Influence of anisotropic conductivity on EEG source reconstruction: investigations in a rabbit model. IEEE Trans Biomed Eng 53(9):1841–1850

    Article  PubMed  Google Scholar 

  7. Rush S, Driscoll D (1968) Current distribution in the brain from surface electrodes. Anesth Analg 47:717–723

    Article  CAS  PubMed  Google Scholar 

  8. Sadleir RJ, Argibay A (2007) Modeling skull electric properties. Ann Biomed Eng 35:1699–1712

    Article  CAS  PubMed  Google Scholar 

  9. Oostendorp TF, Delbeke J, Stegeman DF (2000) The conductivity of the human skull: results of in vivo and in vitro measurements. IEEE Trans Biomed Eng 47:1487–1492

    Article  CAS  PubMed  Google Scholar 

  10. Law SK (1993) Thickness and resistivity variations over the upper surface of the human skull. Brain Topogr 6:99–109

    Article  CAS  PubMed  Google Scholar 

  11. Geneser SE, Kirby RM, MacLeod RS (2008) Application of stochastic finite element methods to study the sensitivity of ECG forward modeling to organ conductivity. IEEE Trans Biomed Eng 55:31–40

    Article  PubMed  Google Scholar 

  12. Si H (2004) TetGen. http://tetgen.berlios.de

  13. Shattuck DW (2005) BrainSuite 2 Tutorial. Online version. http://brainsuite.usc.edu

  14. Bashar MR, Li Y, Wen P (2009) EEG analysis on skull conductivity perturbations using realistic head model. Lect Notes Comput Sci 5589:208–215

    Article  Google Scholar 

  15. Jain M, Kumaradas JC, Sharifi FJ, Whelan WM (2006) Uncertainty and sensitivity analysis for a tissue laser irradiation tissue model. In: IEEE Canadian conference on electrical and computer engineering (CCECE), pp 1171–1175

  16. Wang Y, David RH, Kim Y (2001) An investigation of the importance of myocardial anisotropy in finite-element modeling of the heart: methodology and application to the estimation of defibrillation efficacy. IEEE Trans Biomed Eng 48(12):1377–1389

    Article  CAS  PubMed  Google Scholar 

  17. Bashar MR, Li Y, Wen P (2008) Influence of white matter inhomogeneous anisotropy on EEG forward computing. Australas Phys Eng Sci Med 31(2):122–130

    Article  CAS  PubMed  Google Scholar 

  18. Wen P (2000) Human head modelling and computation for the EEG forward problem. PhD dissertation, The Flinders University of South Australia, Australia

  19. Glavaski S Marsden JE, Murray RM (1998) Model reduction, centering, and the Karhunen-Loeve expansion. In: IEEE proceedings of the conference on decision & control, pp 2071–2076

  20. Wen P, Li Y (2006) EEG human head modelling based on heterogeneous tissue conductivity. Australas Phys Eng Sci Med 29:235–240

    Article  CAS  PubMed  Google Scholar 

  21. Chauveau N, Franceries X, Aubry F, Celsis P, Rigaud B (2008) Critical imaging on head template: a simulation study using resistor mesh model (RMM). Brain Topogr 21:52–60

    Article  PubMed  Google Scholar 

  22. Geddes LA, Baker LE (1967) The specific resistance of biological material—a compendium of data for the biomedical engineer and physiologist. Med Biol Eng 5:271–293

    Article  CAS  PubMed  Google Scholar 

  23. Lai Y, Drongelen WV, Ding L, Hecox KE, Towle VL, Frim DM, He B (2005) Estimation of in vivo human brain-to-skull conductivity ratio from simultaneous extra-and intra-cranial electrical potential recordings. Clin Neurophysiol 116:456–465

    Article  CAS  PubMed  Google Scholar 

  24. Baumann SB, Wozny DR, Kelly SK, Meno FM (1997) The electrical conductivity of human cerebrospinal fluid at body temperature. IEEE Trans Biomed Eng 54:220–223

    Article  Google Scholar 

  25. Marin G, Guerin C, Baillet S, Garnero L, Meunier G (1998) Influence of skull anisotropy for the forward and inverse problem in EEG: simulation studies using FEM on realistic head models. Hum Brain Mapp 6:250–269

    Article  CAS  PubMed  Google Scholar 

  26. Li L, Wang K, Zhu S, Mueller K, Lim K, Liu Z, He B (2007) A study of white matter anisotropic conductivity on EEG forward solutions. In: IEEE proceedings of noninvasive functional source imaging of the brain and heart and the international conference on functional biomedical imaging (NFSI & ICFBI), pp 130–132

  27. Oakley JE, O’Hagan A (2004) Probabilistic sensitivity analysis of complex models: a Bayesian approach. J R Stat Soc 63:751–769

    Article  Google Scholar 

  28. Yan Y, Nunez PL, Hart RT (1991) Finite-element model of the human head: scalp potentials due to dipole sources. Med Biol Eng Comput 29:475–481

    Article  CAS  PubMed  Google Scholar 

  29. Baillet S, Mosher JC, Leahy RM (2004) Electromagnetic brain imaging using brainstorm. In: IEEE international symposium on biomedical engineering: macro to nano, pp 652–655

  30. Klepfer RN, Johnson CR, Robert SM (1997) The effects of inhomogeneities and anisotropies on electrocardiographic fields: a 3-D finite-element study. IEEE Trans Biomed Eng 44(8):706–719

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Bashar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bashar, M.R., Li, Y. & Wen, P. Uncertainty and sensitivity analysis for anisotropic inhomogeneous head tissue conductivity in human head modelling. Australas Phys Eng Sci Med 33, 145–152 (2010). https://doi.org/10.1007/s13246-010-0015-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-010-0015-7

Keywords

Navigation