Skip to main content

Advertisement

Log in

Contribution of nuclear events in generation and maintenance of cancer stem cells: revisiting chemo-resistance

  • Review Article
  • Published:
The Nucleus Aims and scope Submit manuscript

Abstract

While chemotherapy is often capable of reducing the tumor bulk, disease-free survival of patients is curtailed by recurrence because of chemoresistance. In fact, the cardinal reason of treatment failure can be attributed to chemoresistance, which involves a complex mechanism. In the present scenario, cancer stem cells (CSCs) have been identified to play a pivotal role in chemoresistance. A few reviews have discussed numerous mechanisms of chemoresistance in CSCs and the therapeutic strategies targeting stem cell signaling pathways. References are also there elaborating the applications of therapeutic nanoparticles and epigenetic drugs in targeting CSCs. However, there is a paucity of information in this area that should be explored and addressed. It is a well known fact that the nucleus harbors the entire genome of an organism and is the master regulator of all the genetic and epigenetic programs. In fact, majority of the features of CSCs evolve from cell nucleus. Here we review, the prevailing and emanating concepts of how the key nuclear events like (1) genetic regulation, (2) epigenetic regulation, (3) regulation by microRNAs (miRNA), and (4) DNA repair, can influence CSC properties like (a) induction of EMT (epithelial-mesenchymal transition), (b) self renewal, (c) drug resistance, (d) cellular plasticity, and (e) pluripotency, thereby finally aiding in chemoresistance and cancer recurrence. Information obtained from the discussion will help in revisiting chemoresistance and provide approaches for treating CSCs by targeting nuclear events, thereby improving the prognosis and survival rate of cancer patients in near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abetov D, Mustapova Z, Saliev T, Bulanin D, Batyrbekov K, Gilman CP. Novel small molecule inhibitors of cancer stem cell signaling pathways. Stem Cell Rev. 2015;11:909–18.

    Article  CAS  PubMed  Google Scholar 

  2. Adhikary G, Grun D, Balasubramanian S, Kerr C, Huang JM, Eckert RL. Survival of skin cancer stem cells requires the Ezh2 polycomb group protein. Carcinogenesis. 2015;36:800–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bae KM, Dai Y, Vieweg J, Siemann DW. Hypoxia regulates SOX2 expression to promote prostate cancer cell invasion and sphere formation. Am J Cancer Res. 2016;6:1078–88.

    PubMed  PubMed Central  Google Scholar 

  4. Bak Y, Kwon T, Bak I, Hong J, Yu DY, Yoon DY. IL-32θ inhibits stemness and epithelial-mesenchymal transition of cancer stem cells via the STAT3 pathway in colon cancer. Oncotarget. 2016;7:7307–17.

    PubMed  PubMed Central  Google Scholar 

  5. Bansal N, Petrie K, Christova R, Chung CY, Leibovitch BA, Howell L, et al. Targeting the SIN3A-PF1 interaction inhibits epithelial to mesenchymal transition and maintenance of a stemcell phenotype in triple negative breast cancer. Oncotarget. 2015;6:34087–105.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bao L, Hazari S, Mehra S, Kaushal D, Moroz K, Dash S. Increased expression of P-glycoprotein and doxorubicin chemoresistance of metastatic breast cancer is regulated by miR-298. Am J Pathol. 2012;180:2490–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bartkova J, Horejsí Z, Koed K, Krämer A, Tort F, Zieger K, et al. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature. 2005;434:864–70.

    Article  CAS  PubMed  Google Scholar 

  8. Bartucci M, Svensson S, Romania P, Dattilo R, Patrizii M, Signore M, et al. Therapeutic targeting of Chk1 in NSCLC stem cells during chemotherapy. Cell Death Differ. 2012;19:768–78.

    Article  CAS  PubMed  Google Scholar 

  9. Bitarte N, Bandres E, Boni V, Zarate R, Rodriguez J, Gonzalez-Huarriz M, et al. MicroRNA-451 is involved in the self-renewal, tumorigenicity, and chemoresistance of colorectal cancer stem cells. Stem Cells. 2011;29:1661–71.

    Article  CAS  PubMed  Google Scholar 

  10. Boccard SG, Marand SV, Geraci S, Pycroft L, Berger FR, Pelletier LA. Inhibition of DNA-repair genes Ercc1 and Mgmt enhances temozolomide efficacy in gliomas treatment: a pre-clinical study. Oncotarget. 2015;6:29456–68.

    PubMed  PubMed Central  Google Scholar 

  11. Boumahdi S, Driessens G, Lapouge G, Rorive S, Nassar D, Le Mercier M, et al. SOX2 controls tumour initiation and cancer stem-cell functions in squamous-cell carcinoma. Nature. 2014;511:246–50.

    Article  CAS  PubMed  Google Scholar 

  12. Bracken CP, Gregory PA, Kolesnikoff N, Bert AG, Wang J, Shannon MF, et al. A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition. Cancer Res. 2008;68:7846–54.

    Article  CAS  PubMed  Google Scholar 

  13. Bröske AM, Vockentanz L, Kharazi S, Huska MR, Mancini E, Scheller M, et al. DNA methylation protects hematopoietic stem cell multipotency from myeloerythroid restriction. Nat Genet. 2009;41:1207–15.

    Article  PubMed  CAS  Google Scholar 

  14. Bu P, Chen KY, Chen JH, Wang L, Walters J, Shin YJ, et al. A microRNA miR-34a regulated bimodal switch targets notch in colon cancer stem cells. Cell Stem Cell. 2013;12:602–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cao Q, Yu J, Dhanasekaran SM, Kim JH, Mani RS, Tomlins SA, et al. Repression of E-cadherin by the polycomb group protein EZH2 in cancer. Oncogene. 2008;27:7274–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Carmona FJ, Davalos V, Vidal E, Gomez A, Heyn H, Hashimoto Y, et al. A comprehensive DNA methylation profile of epithelial-to-mesenchymal transition. Cancer Res. 2014;74:5608–19.

    Article  CAS  PubMed  Google Scholar 

  17. Chae YK, Anker JF, Carneiro BA, Chandra S, Kaplan J, Kalyan A, et al. Genomic landscape of DNA repair genes in cancer. Oncotarget. 2016. doi:10.18632/oncotarget.8196.

    Google Scholar 

  18. Chang CJ, Chao CH, Xia W, Yang JY, Xiong Y, Li CW, et al. p53 regulates epithelial-mesenchymal transition and stem cell properties through modulating miRNAs. Nat Cell Biol. 2011;13:317–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chun-Zhi Z, Lei H, An-Ling Z, Yan-Chao F, Xiao Y, Guang-Xiu W, et al. MicroRNA-221 and microRNA-222 regulate gastric carcinoma cell proliferation and radioresistance by targeting PTEN. BMC Cancer. 2010;10:367.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Costello RT, Mallet F, Gaugler B, Sainty D, Arnoulet C, Gastaut J, et al. Human acute myeloid leukemia CD34/CD38 progenitor cells have decreased sensitivity to chemotherapy and Fas induced apoptosis, reduced immunogenicity, and impaired dendritic cell transformation capacities. Cancer Res. 2000;60:4403–11.

    CAS  PubMed  Google Scholar 

  21. Dean M, Fojo T, Bates S. Tumour stem cells and drug resistance. Nat Rev Cancer. 2005;5:275–84.

    Article  CAS  PubMed  Google Scholar 

  22. Dean M. ABC transporters, drug resistance, and cancer stem cells. J Mammary Gland Biol Neoplasia. 2009;14:3–9.

    Article  PubMed  Google Scholar 

  23. Dey S, Maiti AK, Hegde ML, Hegde PM, Boldogh I, Sarkar PS, et al. Increased risk of lung cancer associated with a functionally impaired polymorphic variant of the human DNA glycosylase NEIL2. DNA Repair (Amst). 2012;11:570–8.

    Article  CAS  Google Scholar 

  24. Doherty MR, Smigiel JM, Junk DJ, Jackson MW. Cancer stem cell plasticity drives therapeutic resistance. Cancers (Basel). 2016;8:8.

    Article  Google Scholar 

  25. Eckford PD, Sharom FJ. ABC efflux pump-based resistance to chemotherapy drugs. Chem Rev. 2009;109:2989–3011.

    Article  CAS  PubMed  Google Scholar 

  26. El Khoury F, Corcos L, Durand S, Simon B, Le Jossic-Corcos C, et al. Acquisition of anticancer drug resistance is partially associated with cancer stemness in human colon cancer cells. Int J Oncol. 2016;49:2558–68.

    PubMed  Google Scholar 

  27. Esquela-Kerscher A, Slack FJ. Oncomirs—microRNAs with a role in cancer. Nat Rev Cancer. 2006;6:259–69.

    Article  CAS  PubMed  Google Scholar 

  28. Farnie G, Sotgia F, Lisanti MP. High mitochondrial mass identifies a sub-population of stem-like cancer cells that are chemo-resistant. Oncotarget. 2015;6:30472–86.

    PubMed  PubMed Central  Google Scholar 

  29. Feinberg AP, Tycko B. The history of cancer epigenetics. Nat Rev Cancer. 2004;4:143–53.

    Article  CAS  PubMed  Google Scholar 

  30. Ferretti R, Bhutkar A, McNamara MC, Lees JA. BMI1 induces an invasive signature in melanoma that promotes metastasis and chemoresistance. Genes Dev. 2016;30:18–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Friday BB, Anderson SK, Buckner J, Yu C, Giannini C, Geoffroy F, et al. Phase II trial of vorinostat in combination with bortezomib in recurrent glioblastoma: a north central cancer treatment group study. Neuro Oncol. 2012;14:215–21.

    Article  CAS  PubMed  Google Scholar 

  32. Gallo M, Coutinho FJ, Vanner RJ, Gayden T, Mack SC, Murison A, et al. MLL5 orchestrates a cancer self-renewal state by repressing the histone variant H3.3 and globally reorganizing chromatin. Cancer Cell. 2015;28:715–29.

    Article  CAS  PubMed  Google Scholar 

  33. Gao Y, Zhao Y, Zhang J, Lu Y, Liu X, Geng P, et al. The dual function of PRMT1 in modulating epithelial-mesenchymal transition and cellular senescence in breastcancer cells through regulation of ZEB1. Sci Rep. 2016;6:19874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Garzia L, Andolfo I, Cusanelli E, Marino N, Petrosino G, De Martino D, et al. MicroRNA-199b-5p impairs cancer stem cells through negative regulation of HES1 in medulloblastoma. PLoS ONE. 2009;4:e4998.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Gisel A, Valvano M, El Idrissi IG, Nardulli P, Azzariti A, Carrieri A, et al. MiRNAs for the detection of multidrug resistance: overview and perspectives. Molecules. 2014;19:5611–23.

    Article  PubMed  CAS  Google Scholar 

  36. Glasspool RM, Brown R, Gore ME, Rustin GJ, McNeish IA, Wilson RH, et al. A randomised, phase II trial of the DNA-hypomethylating agent 5-aza-2′-deoxycytidine (decitabine) in combination with carboplatin vs carboplatin alone in patients with recurrent, partially platinum-sensitive ovarian cancer. Br J Cancer. 2014;110:1923–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Grady WM, Willis J, Guilford PJ, Dunbier AK, Toro TT, Lynch H, et al. Methylation of the CDH1 promoter as the second genetic hit in hereditary diffuse gastric cancer. Nat Genet. 2000;26:16–7.

    Article  CAS  PubMed  Google Scholar 

  38. Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol. 2008;10:593–601.

    Article  CAS  PubMed  Google Scholar 

  39. Guha M, Srinivasan S, Ruthel G, Kashina AK, Carstens RP, Mendoza A, et al. Mitochondrial retrograde signaling induces epithelial-mesenchymal transition and generates breast cancer stem cells. Oncogene. 2014;33:5238–50.

    Article  CAS  PubMed  Google Scholar 

  40. Guo W, Keckesova Z, Donaher JL, Shibue T, Tischler V, Reinhardt F, et al. Slug and SOX9 cooperatively determine the mammary stem cell state. Cell. 2012;148:1015–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Han ML, Wang F, Gu YT, Pei XH, Ge X, Guo GC, et al. MicroR-760 suppresses cancer stem cell subpopulation and breast cancer cell proliferation and metastasis: by down-regulating NANOG. Biomed Pharmacother. 2016;80:304–10.

    Article  CAS  PubMed  Google Scholar 

  42. Heddleston JM, Wu Q, Rivera M, Minhas S, Lathia JD, Sloan AE, et al. Hypoxia-induced mixed-lineage leukemia 1 regulates glioma stem cell tumorigenic potential. Cell Death Differ. 2012;19:428–39.

    Article  CAS  PubMed  Google Scholar 

  43. Hegde ML, Hegde PM, Bellot LJ, Mandal SM, Hazra TK, Li GM, et al. Prereplicative repair of oxidized bases in the human genome is mediated by NEIL1 DNA glycosylase together with replication proteins. Proc Natl Acad Sci USA. 2013;110:E3090–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hendrix MJ, Seftor EA, Hess AR, Seftor RE. Vasculogenic mimicry and tumour-cell plasticity: lessons from melanoma. Nat Rev Cancer. 2003;3:411–21.

    Article  CAS  PubMed  Google Scholar 

  45. Herman JG, Baylin SB. Gene silencing in cancer in association with promoter hypermethylation. N Engl J Med. 2003;349:2042–54.

    Article  CAS  PubMed  Google Scholar 

  46. Herranz N, Pasini D, Díaz VM, Francí C, Gutierrez A, Dave N, et al. Polycomb complex 2 Is required for E-cadherin repression by the Snail1 transcription factor. Mol Cell Biol. 2008;28:4772–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Honoki K, Fujii H, Kubo A, Kido A, Mori T, Tanaka Y, et al. Possible involvement of stemlike populations with elevated ALDH1 in sarcomas for chemotherapeutic drug resistance. Oncol Rep. 2010;24:501–5.

    Article  CAS  PubMed  Google Scholar 

  48. Hoofd C, Wang X, Lam S, Jenkins C, Wood B, Giambra V, et al. CD44 promotes chemoresistance in T-ALL by increased drug efflux. Exp Hematol. 2016;44:166–71.

    Article  CAS  PubMed  Google Scholar 

  49. Iliopoulos D, Hirsch HA, Struhl K. An epigenetic switch involving NF-kappaB, Lin28, Let-7 MicroRNA, and IL6 links inflammation to cell transformation. Cell. 2009;139:693–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Iliopoulos D, Lindahl-Allen M, Polytarchou C, Hirsch HA, Tsichlis PN, Struhl K, et al. Loss of miR-200 inhibition of Suz12 leads to polycomb-mediated repression required for the formation and maintenance of cancer stem cells. Mol Cell. 2010;39:761–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jeter CR, Yang T, Wang J, Chao HP, Tang DG. Concise review: NANOG in cancer stem cells and tumor development: an update and outstanding questions. Stem Cells. 2015;33:2381–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Johannessen TC, Bjerkvig R, Tysnes BB. DNA repair and cancer stem-like cells–potential partners in glioma drug resistance? Cancer Treat Rev. 2008;34:558–67.

    Article  CAS  PubMed  Google Scholar 

  53. Kaseb HO, Lewis DW, Saunders WS, Gollin SM. Cell division patterns and chromosomal segregation defects in oral cancer stem cells. Genes Chromosomes Cancer. 2016. doi:10.1002/gcc.22371.

    PubMed  Google Scholar 

  54. Kim SH, Joshi K, Ezhilarasan R, Myers TR, Siu J, Gu C, et al. EZH2 protects glioma stem cells from radiation-induced cell death in a MELK/FOXM1-dependent manner. Stem Cell Rep. 2015;4:226–38.

    Article  CAS  Google Scholar 

  55. Kirschner K, Melton DW. Multiple roles of the ERCC1-XPF endonuclease in DNA repair and resistance to anticancer drugs. Anticancer Res. 2010;30:3223–32.

    CAS  PubMed  Google Scholar 

  56. Kobunai T, Watanabe T, Fukusato T. REG4, NEIL2, and BIRC5 gene expression correlates with gamma-radiation sensitivity in patients with rectal cancer receiving radiotherapy. Anticancer Res. 2011;31:4147–53.

    CAS  PubMed  Google Scholar 

  57. Kokura K, Sun L, Bedford MT, Fang J. Methyl-H3K9-binding protein MPP8 mediates E-cadherin gene silencing and promotes tumour cell motility and invasion. EMBO J. 2010;29:3673–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kong D, Heath E, Chen W, Cher ML, Powell I, Heilbrun L, et al. Loss of let-7 up-regulates EZH2 in prostate cancer consistent with the acquisition of cancer stem cell signatures that are attenuated by BR-DIM. PLoS ONE. 2012;7:e33729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kozono D, Li J, Nitta M, Sampetrean O, Gonda D, Kushwaha DS, et al. Dynamic epigenetic regulation of glioblastoma tumorigenicity through LSD1 modulation of MYC expression. Proc Natl Acad Sci USA. 2015;112:E4055–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kreso A, Dick JE. Evolution of the cancer stem cell model. Cell Stem Cell. 2014;14:275–91.

    Article  CAS  PubMed  Google Scholar 

  61. Lamb R, Harrison H, Hulit J, Smith DL, Lisanti MP, Sotgia F, et al. Mitochondria as new therapeutic targets for eradicating cancer stem cells: quantitative proteomics and functional validation via MCT1/2 inhibition. Oncotarget. 2014;5:11029–37.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Lee EJ, Rath P, Liu J, Ryu D, Pei L, Noonepalle SK, et al. Identification of global DNA methylation signatures in glioblastoma-derived cancer stem cells. J Genet Genom. 2015;42:355–71.

    Article  Google Scholar 

  63. Lee H, Herrmann A, Deng JH, Kujawski M, Niu G, Li Z, et al. Persistently activated Stat3 maintains constitutive NF-kappaB activity in tumors. Cancer Cell. 2009;15:283–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lee SH, Nam HJ, Kang HJ, Samuels TL, Johnston N, Lim YC. Valproic acid suppresses the self-renewal and proliferation of head and neck cancer stem cells. Oncol Rep. 2015;34:2065–71.

    CAS  PubMed  Google Scholar 

  65. Li J, Yang S, Su N, Wang Y, Yu J, Qiu H, et al. Overexpression of long non-coding RNA HOTAIR leads to chemoresistance by activating the Wnt/β-catenin pathway in human ovarian cancer. Tumour Biol. 2016;37:2057–65.

    Article  CAS  PubMed  Google Scholar 

  66. Li SY, Sun R, Wang HX, Shen S, Liu Y, Du XJ, et al. Combination therapy with epigenetic-targeted and chemotherapeutic drugs delivered by nanoparticles to enhance the chemotherapy response and overcome resistance by breast cancer stem cells. J Control Release. 2015;205:7–14.

    Article  CAS  PubMed  Google Scholar 

  67. Li T, Zheng Q, An J, Wu M, Li H, Gui X, et al. SET1A cooperates with CUDR to promote liver cancer growth and hepatocyte-like stem cell malignant transformation epigenetically. Mol Ther. 2016;24:261–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Li Z, Zhao L, Wang Q. Overexpression of long non-coding RNA HOTTIP increases chemoresistance of osteosarcoma cell by activating the Wnt/β-catenin pathway. Am J Transl Res. 2016;8:2385–93.

    PubMed  PubMed Central  Google Scholar 

  69. Lim YY, Wright JA, Attema JL, Gregory PA, Bert AG, Smith E, et al. Epigenetic modulation of the miR-200 family is associated with transition to a breast cancer stem-cell-like state. J Cell Sci. 2013;126:2256–66.

    Article  CAS  PubMed  Google Scholar 

  70. Liu C, Kelnar K, Liu B, Chen X, Calhoun-Davis T, Li H, et al. The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med. 2011;17:211–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Liu G, Yuan X, Zeng Z, Tunici P, Ng H, Abdulkadir IR, et al. Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer. 2006;5:67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Liu L, Chen L, Wu X, Li X, Song Y, Mei Q, et al. Low-dose DNA-demethylating agent enhances the chemosensitivity of cancer cells by targeting cancer stem cells via the upregulation of microRNA-497. J Cancer Res Clin Oncol. 2016;142:1431–9.

    Article  CAS  PubMed  Google Scholar 

  73. Liu L, Liu C, Zhang Q, Shen J, Zhang H, Shan J, et al. SIRT1-mediated transcriptional regulation of SOX2 is important for self-renewal of liver cancer stem cells. Hepatology. 2016. doi:10.1002/hep.28690.

    Google Scholar 

  74. Liu S, Cong Y, Wang D, Sun Y, Deng L, Liu Y, et al. Breast cancer stem cells transition between epithelial and mesenchymal states reflective of their normal counterparts. Stem Cell Rep. 2013;2:78–91.

    Article  CAS  Google Scholar 

  75. Lo WL, Yu CC, Chiou GY, Chen YW, Huang PI, Chien CS, et al. MicroRNA-200c attenuates tumour growth and metastasis of presumptive head and neck squamous cell carcinoma stem cells. J Pathol. 2011;223:482–95.

    Article  CAS  PubMed  Google Scholar 

  76. Longley DB, Johnston PG. Molecular mechanisms of drug resistance. J Pathol. 2005;205:275–92.

    Article  CAS  PubMed  Google Scholar 

  77. Lu B, Huang X, Mo J, Zhao W. Drug delivery using nanoparticles for cancer stem-like cell targeting. Front Pharmacol. 2016;7:84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Lu J, Song G, Tang Q, Yin J, Zou C, Zhao Z, et al. MiR-26a inhibits stem cell-like phenotype and tumor growth of osteosarcoma by targeting Jagged1. Oncogene. 2016. doi:10.1038/onc.2016.194.

    Google Scholar 

  79. Lu S, Labhasetwar V. Drug resistant breast cancer cell line displays cancer stem cell phenotype and responds sensitively to epigenetic drug SAHA. Drug Deliv Transl Res. 2013;3:183–94.

    Article  CAS  PubMed  Google Scholar 

  80. Lynam-Lennon N, Reynolds JV, Pidgeon GP, Lysaght J, Marignol L, Maher SG. Alterations in DNA repair efficiency are involved in the radioresistance of esophageal adenocarcinoma. Radiat Res. 2010;174:703–11.

    Article  CAS  PubMed  Google Scholar 

  81. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 2008;133:704–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Mathews LA, Cabarcas SM, Hurt EM, Zhang X, Jaffee EM, Farrar WL. Increased expression of DNA repair genes in invasive human pancreatic cancer cells. Pancreas. 2011;40:730–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Maugeri-Saccà M, Bartucci M, De Maria R. DNA damage repair pathways in cancer stem cells. Mol Cancer Ther. 2012;11:1627–36.

    Article  PubMed  CAS  Google Scholar 

  84. Monaghan RM, Whitmarsh AJ. Mitochondrial proteins moonlighting in the nucleus. Trends Biochem Sci. 2015;40:728–35.

    Article  CAS  PubMed  Google Scholar 

  85. Moreb JS. Aldehyde dehydrogenase as a marker for stem cells. Curr Stem Cell Res Ther. 2008;3:237–46.

    Article  CAS  PubMed  Google Scholar 

  86. Morel AP, Lièvre M, Thomas C, Hinkal G, Ansieau S, Puisieux A. Generation of breast cancer stem cells through epithelial-mesenchymal transition. PLoS ONE. 2008;3:e2888.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Mukherjee S, Mazumdar M, Chakraborty S, Manna A, Saha S, Khan P, et al. Curcumin inhibits breast cancer stem cell migration by amplifying the E-cadherin/β-catenin negative feedback loop. Stem Cell Res Ther. 2014;5:116.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Mukherjee S, Manna A, Bhattacharjee P, Mazumdar M, Saha S, Chakraborty S, et al. Non-migratory tumorigenic intrinsic cancer stem cells ensure breast cancer metastasis by generation of CXCR4+ migrating cancer stem cells. Oncogene. 2016. doi:10.1038/onc.2016.26.

    Google Scholar 

  89. Munster PN, Thurn KT, Thomas S, Raha P, Lacevic M, Miller A, et al. A phase II study of the histone deacetylase inhibitor vorinostat combined with tamoxifen for the treatment of patients with hormone therapy-resistant breast cancer. Br J Cancer. 2011;104:1828–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Münster P, Marchion D, Bicaku E, Schmitt M, Lee JH, DeConti R, et al. Phase I trial of histone deacetylase inhibition by valproic acid followed by the topoisomerase II inhibitor epirubicin in advanced solid tumors: a clinical and translational study. J Clin Oncol. 2007;25:1979–85.

    Article  PubMed  CAS  Google Scholar 

  91. Murakami S, Ninomiya W, Sakamoto E, Shibata T, Akiyama H, Tashiro F. SRY and OCT4 are required for the acquisition of cancer stem cell-like properties and are potential differentiation therapy targets. Stem Cells. 2015;33:2652–63.

    Article  CAS  PubMed  Google Scholar 

  92. Nervi C, De Marinis E, Codacci-Pisanelli G. Epigenetic treatment of solid tumours: a review of clinical trials. Clin Epigenet. 2015;7:127.

    Article  CAS  Google Scholar 

  93. Ordóñez-Morán P, Dafflon C, Imajo M, Nishida E, Huelsken J. HOXA5 counteracts stem cell traits by inhibiting Wnt signaling in colorectal cancer. Cancer Cell. 2015;28:815–29.

    Article  PubMed  CAS  Google Scholar 

  94. Özeş AR, Miller DF, Özeş ON, Fang F, Liu Y, Matei D, et al. NF-κB-HOTAIR axis links DNA damage response, chemoresistance and cellular senescence in ovarian cancer. Oncogene. 2016. doi:10.1038/onc.2016.75.

    PubMed  PubMed Central  Google Scholar 

  95. Pan YZ, Morris ME, Yu AM. MicroRNA-328 negatively regulates the expression of breast cancer resistance protein (BCRP/ABCG2) in human cancer cells. Mol Pharmacol. 2009;75:1374–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Pang MF, Georgoudaki AM, Lambut L, Johansson J, Tabor V, Hagikura K, et al. TGF-β1-induced EMT promotes targeted migration of breast cancer cells through the lymphatic system by the activation of CCR7/CCL21-mediated chemotaxis. Oncogene. 2016;35:748–60.

    Article  CAS  PubMed  Google Scholar 

  97. Park SM, Gaur AB, Lengyel E, Peter ME. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev. 2008;22:894–907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Pathania R, Ramachandran S, Elangovan S, Padia R, Yang P, Cinghu S, et al. DNMT1 is essential for mammary and cancer stem cell maintenance and tumorigenesis. Nat Commun. 2015;6:6910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Peinado H, Ballestar E, Esteller M, Cano A. Snail mediates E-cadherin repression by the recruitment of the Sin3A/histone deacetylase 1 (HDAC1)/HDAC2 complex. Mol Cell Biol. 2004;24:306–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Plaks V, Kong N, Werb Z. The cancer stem cell niche: how essential is the niche in regulating stemness of tumor cells? Cell Stem Cell. 2015;16:225–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Piva M, Domenici G, Iriondo O, Rábano M, Simões BM, Comaills V, et al. SOX2 promotes tamoxifen resistance in breast cancer cells. EMBO Mol Med. 2014;6:66–79.

    Article  CAS  PubMed  Google Scholar 

  102. Quail DF, Taylor MJ, Postovit LM. Microenvironmental regulation of cancer stem cell phenotypes. Curr Stem Cell Res Ther. 2012;7:197–216.

    Article  CAS  PubMed  Google Scholar 

  103. Reznik E, Miller ML, Şenbabaoğlu Y, Riaz N, Sarungbam J, Tickoo SK, et al. Mitochondrial DNA copy number variation across human cancers. Elife. 2016;5.pii:e10769. doi:10.7554/eLife.10769.

    Google Scholar 

  104. Rocca A, Minucci S, Tosti G, Croci D, Contegno F, Ballarini M, et al. A phase I-II study of the histone deacetylase inhibitor valproic acid plus chemoimmunotherapy in patients with advanced melanoma. Br J Cancer. 2009;100:28–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Saha S, Mukherjee S, Mazumdar M, Manna A, Khan P, Adhikary A, et al. Mithramycin A sensitizes therapy-resistant breast cancer stem cells toward genotoxic drug doxorubicin. Transl Res. 2015;165:558–77.

    Article  CAS  PubMed  Google Scholar 

  106. Saha S, Mukherjee S, Khan P, Kajal K, Mazumdar M, Manna A, et al. Aspirin suppresses the acquisition of chemoresistance in breast cancer by disrupting an NFκB-IL6 signaling axis responsible for the generation of cancer stem cells. Cancer Res. 2016;76:2000–12.

    Article  CAS  PubMed  Google Scholar 

  107. Sakaki H, Okada M, Kuramoto K, Takeda H, Watarai H, Suzuki S, et al. GSKJ4, a selective jumonji H3K27 demethylase inhibitor, effectively targets ovarian cancer stem cells. Anticancer Res. 2015;35:6607–14.

    CAS  PubMed  Google Scholar 

  108. Sancho P, Barneda D, Heeschen C. Hallmarks of cancer stem cell metabolism. Br J Cancer. 2016;114:1305–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Scharenberg CW, Harkey MA, Torok-Storb B. The ABCG2 transporter is an efficient Hoechst 33342 efflux pump and is preferentially expressed by immature human hematopoietic progenitors. Blood. 2002;99:507–12.

    Article  CAS  PubMed  Google Scholar 

  110. Schwitalla S, Fingerle AA, Cammareri P, Nebelsiek T, Goktuna SI, Ziegler PK, et al. Intestinal tumorigenesis initiated by dedifferentiation and acquisition of stem-cell-like properties. Cell. 2013;152:25–38.

    Article  CAS  PubMed  Google Scholar 

  111. Seguin L, Kato S, Franovic A, Camargo MF, Lesperance J, Elliott KC, et al. An integrin β3-KRAS-RalB complex drives tumour stemness and resistance to EGFR inhibition. Nat Cell Biol. 2014;16:457–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Seo EJ, Kwon YW, Jang IH, Kim DK, Lee SI, Choi EJ, et al. Autotaxin regulates maintenance of ovarian cancer stem cells through lysophosphatidic acid-mediated autocrine mechanism. Stem Cells. 2016;34:551–64.

    Article  CAS  PubMed  Google Scholar 

  113. Shimono Y, Ugalde MZ, Cho RW, Lobo N, Dalerba P, Qian D, et al. Down-regulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell. 2009;138:592–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Siddique HR, Saleem M. Role of BMI1, a stem cell factor, in cancer recurrence and chemoresistance: preclinical and clinical evidences. Stem Cells. 2012;30:372–8.

    Article  CAS  PubMed  Google Scholar 

  115. Sparmann A, van Lohuizen M. Polycomb silencers control cell fate, development and cancer. Nat Rev Cancer. 2006;6:846–56.

    Article  CAS  PubMed  Google Scholar 

  116. Srinivasan T, Walters J, Bu P, Than EB, Tung KL, Chen KY, et al. NOTCH signaling regulates asymmetric cell fate of fast- and slow-cycling colon cancer-initiating cells. Cancer Res. 2016;76:3411–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Stewart CA, Byers LA. Altering the course of small cell lung cancer: targeting cancer stem cells via LSD1 inhibition. Cancer Cell. 2015;28:4–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Sun X, Jiao X, Pestell TG, Fan C, Qin S, Mirabelli E, et al. MicroRNAs and cancer stem cells: the sword and the shield. Oncogene. 2014;33:4967–77.

    Article  CAS  PubMed  Google Scholar 

  119. Tawbi HA, Beumer JH, Tarhini AA, Moschos S, Buch SC, Egorin MJ, et al. Safety and efficacy of decitabine in combination with temozolomide in metastatic melanoma: a phase I/II study and pharmacokinetic analysis. Ann Oncol. 2013;24:1112–9.

    Article  CAS  PubMed  Google Scholar 

  120. To KK, Polgar O, Huff LM, Morisaki K, Bates SE. Histone modifications at the ABCG2 promoter following treatment with histone deacetylase inhibitor mirror those in multidrug-resistant cells. Mol Cancer Res. 2008;6:151–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. To KK, Zhan Z, Litman T, Bates SE. Regulation of ABCG2 expression at the 3′ untranslated region of its mRNA through modulation of transcript stability and protein translation by a putative MicroRNA in the S1 colon cancer cell line. Mol Cell Biol. 2008;28:5147–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Valente S, Liu Y, Schnekenburger M, Zwergel C, Cosconati S, Gros C, et al. Selective non-nucleoside inhibitors of human DNA methyltransferases active in cancer including in cancer stem cells. J Med Chem. 2014;57:701–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Visvader JE, Lindeman GJ. Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer. 2008;8:755–68.

    Article  CAS  PubMed  Google Scholar 

  124. Vyas S, Zaganjor E, Haigis MC. Mitochondria and Cancer. Cell. 2016;166:555–66.

    Article  CAS  PubMed  Google Scholar 

  125. Wada T, Koyama D, Kikuchi J, Honda H, Furukawa Y. Overexpression of the shortest isoform of histone demethylase LSD1 primes hematopoietic stem cells for malignant transformation. Blood. 2015;125:3731–46.

    Article  CAS  PubMed  Google Scholar 

  126. Wahler J, So JY, Cheng LC, Maehr H, Uskokovic M, Suh N. Vitamin D compounds reduce mammosphere formation and decrease expression of putative stem cell markers in breast cancer. J Steroid Biochem Mol Biol. 2015;148:148–55.

    Article  CAS  PubMed  Google Scholar 

  127. Wang J, Lu F, Ren Q, Sun H, Xu Z, Lan R, et al. Novel histone demethylase LSD1 inhibitors selectively target cancer cells with pluripotent stem cell properties. Cancer Res. 2011;71:7238–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Wang L, Bu P, Ai Y, Srinivasan T, Chen HJ, Xiang K, et al. A long non-coding RNA targets microRNA miR-34a to regulate colon cancer stem cell asymmetric division. Elife. 2016;5.pii:e14620.

    Google Scholar 

  129. Wang L, Mosel AJ, Oakley GG, Peng A. Deficient DNA damage signaling leads to chemoresistance to cisplatin in oral cancer. Mol Cancer Ther. 2012;11:2401–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Wang T, Xia L, Ma S, Qi X, Li Q, Xia Y, et al. Hepatocellular carcinoma: thyroid hormone promotes tumorigenicity through inducing cancer stem-like cell self-renewal. Sci Rep. 2016;6:25183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Wang T, Wang G, Hao D, Liu X, Wang D, Ning N, et al. Aberrant regulation of the LIN28A/LIN28B and let-7 loop in human malignant tumors and its effects on the hallmarks of cancer. Mol Cancer. 2015;14:125.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Wang WJ, Wu SP, Liu JB, Shi YS, Huang X, Zhang QB, et al. MYC regulation of CHK1 and CHK2 promotes radioresistance in a stem cell-like population of nasopharyngeal carcinoma cells. Cancer Res. 2013;73:1219–31.

    Article  CAS  PubMed  Google Scholar 

  133. Wang Y, Niu XL, Qu Y, Wu J, Zhu YQ, Sun WJ, et al. Autocrine production of interleukin-6 confers cisplatin and paclitaxel resistance in ovarian cancer cells. Cancer Lett. 2010;295:110–23.

    Article  CAS  PubMed  Google Scholar 

  134. Wang Z, Wang N, Li W, Liu P, Chen Q, Situ H, et al. Caveolin-1 mediates chemoresistance in breast cancer stem cells via β-catenin/ABCG2 signaling pathway. Carcinogenesis. 2014;35:2346–56.

    Article  CAS  PubMed  Google Scholar 

  135. Wienken M, Dickmanns A, Nemajerova A, Kramer D, Najafova Z, Weiss M, et al. MDM2 associates with polycomb repressor complex 2 and enhances stemness-promoting chromatin modifications independent of p53. Mol Cell. 2016;61:68–83.

    Article  CAS  PubMed  Google Scholar 

  136. Wozniak M, Sztiller-Sikorska M, Czyz M. Diminution of miR-340-5p levels is responsible for increased expression of ABCB5 in melanoma cells under oxygen-deprived conditions. Exp Mol Pathol. 2015;99:707–16.

    Article  CAS  PubMed  Google Scholar 

  137. Wright MH, Calcagno AM, Salcido CD, Carlson MD, Ambudkar SV, Varticovski L. Brca1 breast tumors contain distinct CD44+/CD24 and CD133+ cells with cancer stem cell characteristics. Breast Cancer Res. 2008;10:R10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Xi XP, Zhuang J, Teng MJ, Xia LJ, Yang MY, Liu QG, et al. MicroRNA-17 induces epithelial-mesenchymal transition consistent with the cancer stem cell phenotype by regulating CYP7B1 expression in colon cancer. Int J Mol Med. 2016. doi:10.3892/ijmm.2016.2624.

    PubMed Central  Google Scholar 

  139. Xu Y, Ohms SJ, Li Z, Wang Q, Gong G, Hu Y, et al. Changes in the expression of miR-381 and miR-495 are inversely associated with the expression of the MDR1 gene and development of multi-drug resistance. PLoS ONE. 2013;8:e82062.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Yang CS, Chang KY, Dang J, Rana TM. Polycomb group protein Pcgf6 acts as a master regulator to maintain embryonic stem cell identity. Sci Rep. 2016;6:26899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Yang SW, Ping YF, Jiang YX, Luo X, Zhang X, Bian XW, et al. ATG4A promotes tumor metastasis by inducing the epithelial-mesenchymal transition and stem-like properties in gastric cells. Oncotarget. 2016. doi:10.18632/oncotarget.9827.

    Google Scholar 

  142. Yang W, Yu H, Shen Y, Liu Y, Yang Z, Sun T. MiR-146b-5p overexpression attenuates stemness and radioresistance of glioma stem cells by targeting HuR/lincRNA-p21/β-catenin pathway. Oncotarget. 2016. doi:10.18632/oncotarget.9214.

    Google Scholar 

  143. Yoshiyama A, Morii T, Ohtsuka K, Ohnishi H, Tajima T, Aoyagi T, et al. Development of stemness in cancer cell lines resistant to the anticancer effects of zoledronic acid. Anticancer Res. 2016;36:625–31.

    CAS  PubMed  Google Scholar 

  144. You H, Ding W, Rountree CB. Epigenetic regulation of cancer stem cell marker CD133 by transforming growth factor-beta. Hepatology. 2010;51:1635–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Yu CC, Chen PN, Peng CY, Yu CH, Chou MY. Suppression of miR-204 enables oral squamous cell carcinomas to promote cancer stemness, EMT traits, and lymph node metastasis. Oncotarget. 2016. doi:10.18632/oncotarget.7745.

    Google Scholar 

  146. Zahreddine H, Borden KL. Mechanisms and insights into drug resistance in cancer. Front Pharmacol. 2013;4:28.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Zhang M, Behbod F, Atkinson RL, Landis MD, Kittrell F, Edwards D, et al. Identification of tumor-initiating cells in a p53 null mouse model of breast cancer. Cancer Res. 2008;68:4674–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Zhou JN, Zeng Q, Wang HY, Zhang B, Li ST, Nan X, et al. MicroRNA-125b attenuates epithelial-mesenchymal transitions and targets stem-like liver cancer cells through small mothers against decapentaplegic 2 and 4. Hepatology. 2015;62:801–15.

    Article  CAS  PubMed  Google Scholar 

  149. Zhu H, Wu H, Liu X, Evans BR, Medina DJ, Liu CG, et al. Role of MicroRNA miR-27a and miR-451 in the regulation of MDR1/P-glycoprotein expression in human cancer cells. Biochem Pharmacol. 2008;76:582–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by research grants from Council of Scientific and Industrial Research (CSIR), University Grants Commission (UGC), Department of Science and Technology (DST) and Department of Biotechnology (DBT), Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanya Das.

Additional information

Argha Manna and Shruti Banerjee have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manna, A., Banerjee, S., Khan, P. et al. Contribution of nuclear events in generation and maintenance of cancer stem cells: revisiting chemo-resistance. Nucleus 60, 121–135 (2017). https://doi.org/10.1007/s13237-017-0193-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13237-017-0193-8

Keywords

Navigation