Skip to main content
Log in

Molecular cytogenetic use of BAC clones in Neofinetia falcata and Rhynchostylis coelestis

  • Original Article
  • Published:
The Nucleus Aims and scope Submit manuscript

Abstract

Orchidaceae is a highly evolved and largest angiosperm family, which includes enormous number of species and their hybrids. Recent molecular cytogenetic studies of orchid hybrids have successfully started to reveal their origin and chromosome evolution. Here, we constructed BAC libraries of the two orchid plants, Neofinetia falcata and Rhynchostylis coelestis, as molecular cytogenetic tools, which can be used for chromosome-based comparisons of specific regions between different species and their hybrids chromosomes. A total of 21,000 and 10,600 BAC clones with average insert sizes of 74.6 and 50.8 kb were obtained for the N. falcata and R. coelestis, respectively. Random BAC FISH analyses of the two orchid species revealed distribution of some repetitive sequences in these orchid chromosomes. Thus, these BAC clones are useful resources for understanding the genomic organization of the orchid plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BAC:

Bacterial artificial chromosome

FISH:

Fluorescence in situ hybridization

FITC:

Fluorescein isothiocyanate

HMW:

High-molecular-weight

PCR:

Polymerase chain reaction

PFGE:

Pulsed field gel electrophoresis

References

  1. Cai J, Liu X, Vanneste K, Proost S, Tsai WC, Liu KW, Chen LJ, He Y, Xu Q, Bian C, Zheng Z, Sun F, Liu W, Hsiao YY, Pan ZJ, Hsu CC, Yang YP, Hsu YC, Chuang YC, Dievart A, Dufayard JF, Xu X, Wang JY, Wang J, Xiao XJ, Zhao XM, Du R, Zhang GQ, Wang M, Su YY, Xie GC, Liu GH, Li LQ, Huang LQ, Luo YB, Chen HH, Van de Peer Y, Liu ZJ. The genome sequence of the orchid Phalaenopsis equestris. Nat Genet. 2015;47:65–72.

    Article  CAS  PubMed  Google Scholar 

  2. Fukui KN, Suzuki G, Lagudah ES, Rahman S, Appels R, Yamamoto M, Mukai Y. Physical arrangement of retrotransposon-related repeats in centromeric regions of wheat. Plant Cell Physiol. 2001;42:189–96.

    Article  CAS  PubMed  Google Scholar 

  3. Hawkins JS, Kim H, Nason JD, Wing RA, Wendel JF. Differential lineage-specific amplification of transposable elements is responsible for genome size variation in Gossypium. Genome Res. 2006;16:1252–61.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Huang JZ, Lin CP, Cheng TC, Chang BC, Cheng SY, Chen YW, Lee CY, Chin SW, Chen FC. A de novo floral transcriptome reveals clues into Phalaenopsis orchid flower development. PLoS ONE. 2015;10:e0123474.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Ito T, Suzuki G, Ochiai T, Nakada M, Kameya T, Kanno A. Genomic organization of the AODEF gene in Asparagus officinalis L. Genes Genet Syst. 2005;80:95–103.

    Article  CAS  PubMed  Google Scholar 

  6. Leitch IJ, Kahandawala I, Suda J, Hanson L, Ingrouille MJ, Chase MW, Fay MF. Genome size diversity in orchids: consequences and evolution. Ann Bot. 2009;104:469–81.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Miller JT, Dong F, Jackson SA, Song J, Jiang J. Retrotransposon-related DNA sequences in the centromeres of grass chromosomes. Genetics. 1998;150:1615–23.

    PubMed Central  CAS  PubMed  Google Scholar 

  8. Mukai Y, Endo TR, Gill BS. Physical mapping of the 5S rDNA multigene family in common wheat. J Hered. 1990;81:290–5.

    CAS  Google Scholar 

  9. Mukai Y, Nakahara Y, Yamamoto M. Simultaneous discrimination of the three genomes in hexaploid wheat by multicolor fluorescence in situ hybridization using total genomic and highly repeated DNA probes. Genome. 1993;36:489–94.

    Article  CAS  PubMed  Google Scholar 

  10. Nagaki K, Shibata F, Suzuki G, Kanatani A, Ozaki S, Hironaka A, Kashihara K, Murata M. Coexistence of NtCENH3 and two retrotransposons in tobacco centromeres. Chromosom Res. 2011;19:591–605.

    Article  CAS  Google Scholar 

  11. Neumann P, Koblízková A, Navrátilová A, Macas J. Significant expansion of Vicia pannonica genome size mediated by amplification of a single type of giant retroelement. Genetics. 2006;173:1047–56.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Piegu B, Guyot R, Picault N, Roulin A, Saniyal A, Kim H, Collura K, Brar DS, Jackson S, Wing RA, Panaud O. Doubling genome size without polyploidization: dynamics of retrotransposition-driven genomic expansions in Oryza australiensis, a wild relative of rice. Genome Res. 2006;16:1262–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Presting GG, Malysheva L, Fuchs J, Schubert I. A Ty3/gypsy retrotransposon-like sequence localizes to the centromeric regions of cereal chromosomes. Plant J. 1998;16:721–8.

    Article  CAS  PubMed  Google Scholar 

  14. SanMiguel P, Bennetzen JL. Evidence that a recent increase in maize genome size was caused by the massive amplification of intergene retrotransposons. Ann Bot. 1998;82:37–44.

    Article  CAS  Google Scholar 

  15. Shirasu K, Schulman AH, Lahaye T, Schulze-Lefert P. A contiguous 66-kb barley DNA sequence provides evidence for reversible genome expansion. Genome Res. 2000;10:908–15.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Su C, Chao YT, Chang YCA, Chen WC, Chen CY, Lee AY, Hwa KT, Shih MC. De novo assembly of expressed transcripts and global analysis of the Phalaenopsis aphrodite transcriptome. Plant Cell Physiol. 2011;52:1501–14.

    Article  CAS  PubMed  Google Scholar 

  17. Suzuki G, Watanabe M, Toriyama K, Isogai A, Hinata K. Direct cloning of the Brassica S locus by using a P1-derived artificial chromosome (PAC) vector. Gene. 1997;199:133–7.

    Article  CAS  PubMed  Google Scholar 

  18. Suzuki G, Ura A, Saito N, Do GS, Seo BB, Yamamoto M, Mukai Y. BAC FISH analysis in Allium cepa. Genes Genet Syst. 2001;76:251–5.

    Article  CAS  PubMed  Google Scholar 

  19. Suzuki G, Do GS, Mukai Y. Efficient storage and screening system for onion BAC clones. Breeding Sci. 2002;52:157–9.

    Article  CAS  Google Scholar 

  20. Suzuki G, Ogaki Y, Hokimoto N, Xiao L, Kikuchi-Taura A, Harada C, Okayama R, Tsuru A, Onishi M, Saito N, Do GS, Lee SH, Ito T, Kanno A, Yamamoto M, Mukai Y. Random BAC FISH of monocot plants reveals differential distribution of repetitive DNA elements in small and large chromosome species. Plant Cell Rep. 2012;31:621–8.

    Article  CAS  PubMed  Google Scholar 

  21. Tomita RN, Suzuki G, Yoshida K, Yano Y, Tsuchiya T, Kakeda K, Mukai Y, Kowyama Y. Molecular characterization of a 313-kb genomic region containing the Self incompatibility locus of Ipomoea trifida, a diploid relative of sweet potato. Breeding Sci. 2004;54:165–75.

    Article  CAS  Google Scholar 

  22. Tsai WC, Fu CH, Hsiao YY, Huang YM, Chen LJ, Wang M, Liu ZJ, Chen HH. OrchidBase 2.0: comprehensive collection of orchidaceae floral transcriptomes. Plant Cell Physiol. 2013;54:e7.

    Article  CAS  PubMed  Google Scholar 

  23. Yan L, Wang X, Liu H, Tian Y, Lian J, Yang R, Hao S, Wang X, Yang S, Li Q, Qi S, Kui L, Okpekum M, Ma X, Zhang J, Ding Z, Zhang G, Wang W, Dong Y, Sheng J. The genome of Dendrobium officinale illuminates the biology of the important traditional Chinese orchid herb. Mol Plant. 2015;8:922–34.

    Article  CAS  PubMed  Google Scholar 

  24. Zhang P, Li W, Fellers J, Friebe B, Gill BS. BAC-FISH in wheat identifies chromosome landmarks consisting of different types of transposable elements. Chromosoma. 2004;112:288–99.

    Article  CAS  PubMed  Google Scholar 

  25. Zhang J, Wu K, Zeng S, Teixeira da Silva JA, Zhao X, Tian CE, Xia H, Duan J. Transcriptome analysis of Cymbidium sinense and its application to the identification of genes associated with floral development. BMC Genomics. 2013;14:279.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by Grants-in-Aid for Scientific Research (C) (No. 25450006 to Y.M.; No. 25450515 to G.S.), and Scientific Research on Innovative Areas (Nos. 23113006, 23113001 to G.S.) from the Japan Society for Promotion of Science (JSPS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Go Suzuki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsuba, A., Fujii, M., Lee, S.S. et al. Molecular cytogenetic use of BAC clones in Neofinetia falcata and Rhynchostylis coelestis . Nucleus 58, 207–210 (2015). https://doi.org/10.1007/s13237-015-0147-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13237-015-0147-y

Keywords

Navigation