Skip to main content
Log in

Fabrication of Paper-Based Microfluidic Devices Using PECVD for Selective Separation

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

The interest in microfluidic devices is increasing day by day due to consuming much lower amount of chemicals. Paper-based microfluid device is one of the most important types of microfluidic device, due to the inherent superior properties of papers. This study set out to develop a novel approach to fabricate a pH-responsive paper-based microfluidic device using plasma enhanced chemical vapor deposition (PECVD). Magnets were used for masking the paper surface. Poly(2-dimethylaminoethyl methacrylate) (PDMAEMA) thin film having ionizable groups was coated on the inner surfaces of the microfluidic channel. Hydrophobic poly (2,2,3,4,4,4-hexafluoro butyl acrylate) (PHFBA) thin film was used to produce the barrier of the microchannel. A standard chromatography paper was successfully transformed into pH-responsive paper-based microfluidic device. Due to its inherent vapor-based nature, PECVD method provided excellent conformal coverage on the paper surface without disrupting the surface structures. The selective separation ability of the microfluidic device was tested at different pH values using anionic and cationic analytes. The microfluidic device demonstrated selective separation ability of analytes depending on the pH value of the medium. The obtained results showed that the differences between the retentions of both analytes on the microfluidic device at different pH values are much more than those of the uncoated papers under the same conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. M. Whitesides, Nature, 442, 368 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. N. Konno, R. Suzuki, T. Takagi, M. Sugimoto, H. Asama, Y. Sato, H. Irie, T. Hikichi, and H. Ohira, J. Hepato-Biliary-Pancreatic Sci., 28, 115 (2020).

    Article  Google Scholar 

  3. N. D. Kline, A. Tripathi, R. Mirsafavi, I. Pardoe, M. Moskovits, C. Meinhart, J. A. Guicheteau, S. D. Christesen, and A. W. Fountain III, Anal. Chem., 88, 10513 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. P. Kanitthamniyom and Y. Zhang, Microfluid. Nanofluid., 22, 24 (2018).

    Article  CAS  Google Scholar 

  5. N. Tuccitto, Microfluid. Nanofluid., 20, 129 (2016).

    Article  CAS  Google Scholar 

  6. T. Thongkam and K. Hemavibool, Microch. J., 159, 105412 (2020).

    Article  CAS  Google Scholar 

  7. C. Duangdeewong, J. Sitanurak, P. Wilairat, D. Nacapricha, and S. Teerasong, Microch. J., 152, 104447 (2020).

    Article  CAS  Google Scholar 

  8. S. Damiati, Macromol. Res., 28, 1046 (2020).

    Article  CAS  Google Scholar 

  9. G. Y. Ahn, I. Choi, M. Song, S. K. Han, K. Choi, and S.-W. Choi, Macromol. Res., 29, 82 (2021).

    Article  CAS  Google Scholar 

  10. B. K. Gale, A. R. Jafek, C. J. Lambert, B. L. Goenner, H. Moghimifam, U. C. Nze, and S. K. Kamarapu, Inventions, 3, 60 (2018).

    Article  Google Scholar 

  11. B. Majeed, C. Liu, L. V. Acker, R. Daily, T. Miyazaki, D. Sabuncuoglu, and L. Lagae, in 2014 IEEE 64th Electronic Components and Technology Conference (ECTC), IEEE2014, Orlando, 2014, pp 165–169.

    Book  Google Scholar 

  12. V. Gundabala, S. Martinez-Escobar, S. Marquez, M. Marquez, and A. Fernandez-Nieves, J. Phys. D: Appl. Phys., 46, 114006 (2013).

    Article  CAS  Google Scholar 

  13. K. G. Lee, T. J. Lee, S. W. Jeong, H. W. Choi, N. S. Heo, J. Y. Park, T. J. Park, and S. J. Lee, Sensors, 12, 10810 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. H. Jang and H. Noh, Macromol. Res., 23, 493 (2015).

    Article  CAS  Google Scholar 

  15. L. Yu and Z. Z. Shi, Lab Chip, 15, 1642 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. N. Postulka, A. Striegel, M. Krauße, D. Mager, D. Spiehl, T. Meckel, M. Worgull, and M. Biesalski, ACS Appl. Mater. Interfaces, 11, 4578 (2019).

    Article  CAS  PubMed  Google Scholar 

  17. D. A. Bruzewicz, M. Reches, and G. M. Whitesides, Anal. Chem., 80, 3387 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. K. Yamada, T. G. Henares, K. Suzuki, and D. Citterio, Angew. Chem. Int. Ed., 54, 5294 (2015).

    Article  CAS  Google Scholar 

  19. C. Cheng and M. Gupta, Ind. Eng. Chem. Res., 57, 11675 (2018).

    Article  CAS  Google Scholar 

  20. E. Çitak, B. İstanbullu, H. Şakalak, M. Gürsoy, and M. Karaman, Macromol. Chem. Phys., 220, 1900277 (2019).

    Article  CAS  Google Scholar 

  21. G. M. Jeong, H. Seong, Y. S. Kim, S. G. Im, and K. J. Jeong, Polym. Chem., 5, 4459 (2014).

    Article  CAS  Google Scholar 

  22. L. Li, S. Roethel, V. Breedveld, and D. W. Hess, Cellulose, 20, 3219 (2013).

    Article  CAS  Google Scholar 

  23. P.-K. Kao and C.-C. Hsu, Microfluid. Nanofluid., 16, 811 (2014).

    Article  CAS  Google Scholar 

  24. P. Kwong and M. Gupta, Anal. Chem., 84, 10129 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. M. Gürsoy, Plasma Chem. Plasma Process., 1 (2020).

  26. H. Şakalak, K. Yılmaz, M. Gürsoy, and M. Karaman, Chem. Eng. Sci., 215, 115466 (2020).

    Article  CAS  Google Scholar 

  27. H. Yasuda and T. Hirotsu, J. Polym. Sci., Polym. Chem. Ed., 16, 743 (1978).

    Article  CAS  Google Scholar 

  28. A. Pena-Francesch, L. Montero, and S. Borrós, Langmuir, 30, 7162 (2014).

    Article  CAS  PubMed  Google Scholar 

  29. K. Yılmaz, H. Şakalak, M. Gürsoy, and M. Karaman, J. Appl. Polym. Sci., 138, 50119 (2021).

    Article  CAS  Google Scholar 

  30. A. Tourrette, N. D. Geyter, D. Jocic, R. Morent, M. M. C. G. Warmoeskerken, and C. Leys, Colloids Surf. A: Physicochem. Eng. Asp., 352, 126 (2009).

    Article  CAS  Google Scholar 

  31. M. Gürsoy, T. Uçar, Z. Tosun, and M. Karaman, Plasma Process. Polym., 13, 438 (2016).

    Article  CAS  Google Scholar 

  32. D. Lin-Vien, N. B. Colthup, W. G. Fateley, and J. G. Grasselli, in The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules, D. Lin-Vien, Norman B. Colthup, William G. Fateley, and J. G. Grasselli, Eds., Academic Press, San Diego, 1991, pp 73–94.

  33. A. Angelini, C. Fodor, W. Yave, L. Leva, A. Car, and W. Meier, ACS Omega, 3, 18950 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. N. S. Okten, C. C. Canakci, and N. Orakdogen, Eur. Polym. J., 114, 176 (2019).

    Article  CAS  Google Scholar 

  35. M. Karaman, M. Gürsoy, F. Aykül, Z. Tosun, M. D. Kars, and H. B. Yildiz, Plasma Sci. Technol., 19, 085503 (2017).

    Article  CAS  Google Scholar 

  36. D. O. H. Teare, C. G. Spanos, P. Ridley, E. J. Kinmond, V. Roucoules, J. P. S. Badyal, S. A. Brewer, S. Coulson, and C. Willis, Chem. Mater., 14, 4566 (2002).

    Article  CAS  Google Scholar 

  37. M. C. Vasudev, K. D. Anderson, T. J. Bunning, V. V. Tsukruk, and R. R. Naik, ACS Appl. Mater. Interfaces, 5, 3983 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. M. Gürsoy, J. Appl. Polym. Sci., 138, 49722 (2021).

    Article  CAS  Google Scholar 

  39. M. Gürsoy and M. Karaman, Prog. Org. Coat., 120, 190 (2018).

    Article  CAS  Google Scholar 

  40. R. d’Agostino, F. Cramarossa, F. Fracassi, and F. Illuzzi, in Plasma Deposition, Treatment, and Etching of Polymers, Academic Press, Inc., San Diego, 1990, Chap. 2, p 95.

    Book  Google Scholar 

  41. M. Karaman, M. Gürsoy, M. Kus, F. Özel, E. Yenel, Ö. G. Sahin, and H. D. Kivrak, in Surface Treatments for Biological, Chemical, and Physical Applications, John Wiley and Sons, 2017, p 23.

  42. M. Gürsoy and M. Karaman, Chem. Eng. J., 284, 343 (2016).

    Article  CAS  Google Scholar 

  43. H. Yasuda and T. Hsu, J. Polym. Sci., Polym. Chem. Ed., 15, 2411 (1977).

    Article  CAS  Google Scholar 

  44. H. Yasuda, J. Macromol. Sci.-Chem., 10, 383 (1976).

    Article  Google Scholar 

  45. Y. Xu, S. Bolisetty, M. Drechsler, B. Fang, J. Yuan, M. Ballauff, and A. H. E. Müller, Polymer, 49, 3957 (2008).

    Article  CAS  Google Scholar 

  46. V. Bütün, S. Armes, and N. Billingham, Polymer, 42, 5993 (2001).

    Article  Google Scholar 

  47. P. van de Wetering, E. E. Moret, N. M. Schuurmans-Nieuwenbroek, M. J. van Steenbergen, and W. E. Hennink, Bioconjug. Chem., 10, 589 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. M. Gürsoy, M. T. Harris, J. O. Downing, S. N. Barrientos-Palomo, A. Carletto, A. E. Yaprak, M. Karaman, and J. P. S. Badyal, Colloids Surf. A, 529, 195 (2017).

    Article  CAS  Google Scholar 

  49. D. Soto, A. Ugur, T. A. Farnham, K. K. Gleason, and K. K. Varanasi, Adv. Funct. Mater., 28, 1707355 (2018).

    Article  CAS  Google Scholar 

  50. B. Şimşek and M. Karaman, J. Coat. Technol. Res., 17, 381 (2020).

    Article  CAS  Google Scholar 

  51. P. Kovacik, G. Del Hierro, W. Livernois, and K. K. Gleason, Mater. Horizons, 2, 221 (2015).

    Article  CAS  Google Scholar 

  52. S. Saric and R. Schofield, Proc. R. Soc. Lond. A: Math. Phys. Sci., 185, 431 (1946).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported by the Scientific and Technological Research Council of Turkey (TÜBİTAK) with project number 119M227.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Gürsoy.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gürsoy, M. Fabrication of Paper-Based Microfluidic Devices Using PECVD for Selective Separation. Macromol. Res. 29, 423–429 (2021). https://doi.org/10.1007/s13233-021-9050-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-021-9050-3

Keywords

Navigation