Skip to main content

Novel Materials and Fabrication Techniques for Paper-Based Devices

  • Chapter
  • First Online:
Paper-Based Medical Diagnostic Devices

Part of the book series: Bioanalysis ((BIOANALYSIS,volume 10))

  • 612 Accesses

Abstract

Paper has been used in analytical applications ranging from diagnostics to environmental monitoring. In 2007, Martinez et al. introduced the first microfluidics paper-based analytical device (μPAD). They patterned the paper with a hydrophobic reagent to form hydrophilic channels for transporting liquid samples from an inlet to a specific reaction area for diagnosis. To achieve an automatic sequential multistep assay on the μPAD, the control of the speed of wicking fluid in a paper is very important. In this chapter, we focus on new fabrication techniques and novel materials for paper-based devices with controllable wicking speeds.

S.-G. Jeong and R. Ganguly—Authors have contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 64.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cate, D.M., Adkins, J.A., Mettakoonpitak, J., Henry, C.H.: Recent developments in paper-based microfluidic devices. Anal. Chem. 87, 19–41 (2015)

    Article  Google Scholar 

  2. Consden, R., Gordon, A.H., Martin, A.J.: Qualitative analysis of proteins: A partition chromatographic method using paper. Biochem. J. 38, 224–232 (1944)

    Article  Google Scholar 

  3. West, P.W.: Selective spot test for copper. Ind. Eng. Chem. Anal. Ed. 17, 740–741 (1945)

    Article  Google Scholar 

  4. Martinez, A.W., Phillips, S.T., Butte, M.J., Whitesides, G.M.: Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew. Chem. Int. Ed. 46, 1318–1320 (2007)

    Article  Google Scholar 

  5. Yetisen, A.K., Akram, M.S., Lowe, C.R.: Paper-based microfluidic point-of-care diagnostic devices. Lab Chip 13, 2210–2251 (2013)

    Article  Google Scholar 

  6. Jeong, S.-G., Kim, J., Jin, S.H., Park, K.-S., Lee, C.-S.: Flow control in paper-based microfluidic device for automatic multistep assays: A focused minireview. Korean J. Chem. Eng. 33, 2761–2770 (2016)

    Article  Google Scholar 

  7. Lutz, B., et al.: Dissolvable fluidic time delays for programming multi-step assays in instrument-free paper diagnostics. Lab Chip 13, 2840–2847 (2013)

    Article  Google Scholar 

  8. Ainla, A., Hamedi, M.M., Güder, F., Whitesides, G.M.: Electrical textile valves for paper microfluidics. Adv. Mater. 29, 1702894 (2017)

    Article  Google Scholar 

  9. Jiang, Y., Hao, Z., He, Q., Chen, H.: A simple method for fabrication of microfluidic paper-based analytical devices and on-device fluid control with a portable corona generator. RSC Adv. 6, 2888–2894 (2016)

    Article  Google Scholar 

  10. Guo, T., et al.: UV-driven microvalve based on a micro–nano TiO2/SiO2 composite surface for microscale flow control. Nanotechnology 25, 125301 (2014)

    Article  Google Scholar 

  11. Wang, C.-C., et al.: A paper-based, “pop-up” electrochemical device for analysis of beta-hydroxybutyrate. Anal. Chem. 88, 6326–6333 (2016)

    Article  Google Scholar 

  12. Ding, J., Li, B., Chen, L., Qin, W.: A three-dimensional origami paper-based device for potentiometric biosensing. Angew. Chem. Int. Ed. 55, 13033–13037 (2016)

    Article  Google Scholar 

  13. Gong, M.M., Sinton, D.: Turning the page: advancing paper-based microfluidics for broad diagnostic application. Chem. Rev. 117, 8447–8480 (2017)

    Article  Google Scholar 

  14. Jeong, S.-G., Lee, S.H., Choi, C.H., Kim, J., Lee, C.S.: Toward instrument-free digital measurements: A three-dimensional microfluidic device fabricated in a single sheet of paper by double-sided printing and lamination. Lab Chip 15, 1188–1194 (2014)

    Article  Google Scholar 

  15. Jang, I., Song, S.: Facile and precise flow control for a paper-based microfluidic device through varying paper permeability. Lab Chip 15, 3405–3412 (2015)

    Article  Google Scholar 

  16. Darcy, H.P.G.: Exposition et application des principes à suivre et des formules à employer dans les questions de distribution d’eau, etc. In: Dalamont, V. (ed.) Les Fontaines publiques de la ville de Dijon (Paris, 1856)

    Google Scholar 

  17. Fu, E., Ramsey, S.A., Kauffman, P., Lutz, B., Yager, P.: Transport in two-dimensional paper networks. Microfluid. Nanofluid. 10, 29–35 (2011)

    Article  Google Scholar 

  18. Osborn, J.L., et al.: Microfluidics without pumps: Reinventing the T-sensor and H-filter in paper networks. Lab Chip 10, 2659–2665 (2010)

    Article  Google Scholar 

  19. Camplisson, C.K., Schilling, K.M., Pedrotti, W.L., Stone, H.A., Martinez, A.W.: Two-ply channels for faster wicking in paper-based microfluidic devices. Lab Chip 15, 4461–4466 (2015)

    Article  Google Scholar 

  20. Meredith, N.A., et al.: Paper-based analytical devices for environmental analysis. Analyst 141, 1874–1887 (2016)

    Article  Google Scholar 

  21. Fries, N., Odic, K., Conrath, M., Dreyer, M.: The effect of evaporation on the wicking of liquids into a metallic weave. J. Colloid Interface Sci. 321, 118–129 (2008)

    Article  Google Scholar 

  22. Carrilho, E., Martinez, A.W., Whitesides, G.M.: Understanding wax printing: a simple micropatterning process for paper-based microfluidics. Anal. Chem. 81, 7091–7095 (2009)

    Article  Google Scholar 

  23. Schilling, K.M., Jauregui, D., Martinez, A.W.: Paper and toner three-dimensional fluidic devices: Programming fluid flow to improve point-of-care diagnostics. Lab Chip 13, 628–631 (2013)

    Article  Google Scholar 

  24. Barry, D., Parlange, J.-Y., Lockington, D.A., Wissmeier, L.: Comment on “The effect of evaporation on the wicking of liquids into a metallic weave”. In: Fries, N., Odic, K., Conrath M., Dreyer, M. (eds.) J. Colloid Interface Sci. 336, 374–375 (2009)

    Google Scholar 

  25. Renault, C., Li, X., Fosdick, S.E., Crooks, R.M.: Hollow-channel paper analytical devices. Anal. Chem. 85, 7976–7979 (2013)

    Article  Google Scholar 

  26. Giokas, D.L., Tsogas, G.Z., Vlessidis, A.G.: Programming fluid transport in paper-based microfluidic devices using razor-crafted open channels. Anal. Chem. 86, 6202–6207 (2014)

    Article  Google Scholar 

  27. Yuen, P.K., Goral, V.N.: Low-cost rapid prototyping of flexible microfluidic devices using a desktop digital craft cutter. Lab Chip 10, 384–387 (2010)

    Article  Google Scholar 

  28. Hossain, S.M.Z., Luckham, R.E., McFadden, M.J., Brennan, J.D.: Reagentless bidirectional lateral flow bioactive paper sensors for detection of pesticides in beverage and food samples. Anal. Chem. 81, 9055–9064 (2009)

    Article  Google Scholar 

  29. Fu, E., Lutz, B., Kauffman, P., Yager, P.: Controlled reagent transport in disposable 2D paper networks. Lab Chip 10, 918–920 (2010)

    Article  Google Scholar 

  30. Jahanshahi-Anbuhi, S., et al.: Paper-based microfluidics with an erodible polymeric bridge giving controlled release and timed flow shutoff. Lab Chip 14, 229–236 (2014)

    Article  Google Scholar 

  31. Nagar, P., Chauhan, I., Yasir, M.: Insights into polymers: Film formers in mouth dissolving films. Drug Interv. Today 3, 280–289 (2011)

    Google Scholar 

  32. Zwanenburg, P., Li, X., Liu, X.: Magnetic valves with programmable timing capability for fluid control in paper-based microfluidics. In: 2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS). IEEE, Piscataway, NJ (2013)

    Google Scholar 

  33. Hamedi, M.M., et al.: Electrically activated paper actuators. Adv. Mater. 26, 2446–2453 (2016)

    Google Scholar 

  34. Toley, B.J., et al.: A versatile valving toolkit for automating fluidic operations in paper microfluidic devices. Lab Chip 15, 1432–1444 (2015)

    Article  Google Scholar 

  35. Martinez, A.W., et al.: Programmable diagnostic devices made from paper and tape. Lab Chip 10, 2499–2504 (2010)

    Article  Google Scholar 

  36. Jahanshahi-Anbuhi, S., et al.: Creating fast flow channels in paper fluidic devices to control timing of sequential reactions. Lab Chip 12, 5079–5085 (2012)

    Article  Google Scholar 

  37. Glavan, A.C., et al.: Folding analytical devices for electrochemical ELISA in hydrophobic RH paper. Anal. Chem. 86, 11999–12007 (2014)

    Article  Google Scholar 

  38. Connelly, J.T., Rolland, J.P., Whitesides, G.M.: “Paper machine” for molecular diagnostics. Anal. Chem. 87, 7595–7601 (2015)

    Article  Google Scholar 

  39. Lu, B., Zheng, S., Quach, B.Q., Tai, Y.-C.: A study of the autofluorescence of parylene materials for μTAS applications. Lab Chip 10, 1826–1834 (2010)

    Article  Google Scholar 

  40. Fortin, J.B., Lu, T.-M.: Mass spectrometry study during the vapor deposition of poly-para-xylylene thin films. J. Vac. Sci. Technol., A 18, 2459–2465 (2000)

    Article  Google Scholar 

  41. Spicar-Mihalic, P., et al.: CO2 laser cutting and ablative etching for the fabrication of paper-based devices. J. Micromech. Microeng. 23, 067003 (2013)

    Article  Google Scholar 

  42. Ramachandran, S., Fu, E., Lutz, B., Yager, P.: Long-term dry storage of an enzyme-based reagent system for ELISA in point-of-care devices. Analyst 139, 1456–1462 (2014)

    Article  Google Scholar 

  43. Zhang, M., et al.: Three-dimensional paper-based electrochemiluminescence device for simultaneous detection of Pb2+ and Hg2+ based on potential-control technique. Biosens. Bioelectron. 41, 544–550 (2013)

    Article  Google Scholar 

  44. Focke, M., et al.: Lab-on-a-foil: Microfluidics on thin and flexible films. Lab Chip 10, 1365–1386 (2010)

    Article  Google Scholar 

  45. Lutz, S., et al.: Microfluidic lab-on-a-foil for nucleic acid analysis based on isothermal recombinase polymerase amplification (RPA). Lab Chip 10, 887–893 (2010)

    Article  Google Scholar 

  46. Thuo, M.M., et al.: Fabrication of low-cost paper-based microfluidic devices by embossing or cut-and-stack methods. Chem. Mater. 26, 4230–4237 (2014)

    Article  Google Scholar 

  47. Glavan, A.C., et al.: Rapid fabrication of pressure-driven open-channel microfluidic devices in omniphobic RF paper. Lab Chip 13, 2922–2930 (2013)

    Article  Google Scholar 

  48. Lewis, G.G., DiTucci, M.J., Phillips, S.T.: Quantifying analytes in paper-based microfluidic devices without using external electronic readers. Angew. Chem. Int. Ed. 51, 12707–12710 (2012)

    Article  Google Scholar 

  49. Lewis, G.G., DiTucci, M.J., Baker, M.S., Phillips, S.T.: High throughput method for prototyping three-dimensional, paper-based microfluidic devices. Lab Chip 12, 2630–2633 (2012)

    Article  Google Scholar 

  50. Ge, L., Wang, S., Song, X., Ge, S., Yu, J.: 3D origami-based multifunction-integrated immunodevice: Low-cost and multiplexed sandwich chemiluminescence immunoassay on microfluidic paper-based analytical device. Lab Chip 12, 3150–3158 (2012)

    Article  Google Scholar 

  51. Washburn, E.W.: The dynamics of capillary flow. Phys. Rev. 17, 273 (1921)

    Article  Google Scholar 

  52. Fridley, G.E., Le, H., Yager, P.: Highly sensitive immunoassay based on controlled rehydration of patterned reagents in a 2-dimensional paper network. Anal. Chem. 86, 6447–6453 (2014)

    Article  Google Scholar 

  53. Güder, F., et al.: Paper-based electrical respiration sensor. Angew. Chem. Int. Ed. 55, 5727–5732 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Soo Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jeong, SG., Ganguly, R., Lee, CS. (2021). Novel Materials and Fabrication Techniques for Paper-Based Devices. In: Lee, J.H. (eds) Paper-Based Medical Diagnostic Devices. Bioanalysis, vol 10. Springer, Singapore. https://doi.org/10.1007/978-981-15-8723-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-8723-8_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-8722-1

  • Online ISBN: 978-981-15-8723-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics