Skip to main content
Log in

Production of Uniform Microspheres Using a Simple Microfluidic Device with Silica Capillary

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

A microfluidic device is fabricated by using silica capillary with 50 µm inner diameter and 150 µm outer diameter. This device is simple to fabricate by pouring the silica capillary with polydimethylsiloxane (PDMS), then removing the capillary after curing, to form the entire micrometer regime. This device can easily regulate the size of the oil-in-water (O/W) emulsion droplets by changing the flow rate of the continuous phase. The generated emulsion droplets can be reduced to a size of about 75 µm, and produced in uniform size with a coefficient of variation of 2.6%. The polymeric microbeads using organic solvent were produced by mixing hydrophobic PDMS with PDMS-poly(ethylene glycol) to provide hydrophilicity. In addition, it was confirmed that this device can produce uniform emulsion droplets, even in the changed T-junction form. We believe that the microfluidic device with silica capillary can be used as a potential technique for the encapsulation and delivery of various therapeutic drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. C. Giuffrida and G. Spoto, Biosens. Bioelectron., 90, 174 (2017).

    Article  CAS  PubMed  Google Scholar 

  2. L. Hajba and A. Guttman, Trends Analyt Chem., 59, 9 (2014).

    Article  CAS  Google Scholar 

  3. B. Zheng, C. J. Gerdts, and R. F. Ismagilov, Curr. Opin. Struct. Biol., 15, 548 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. H. C. Shum, A. R. Abate, D. Lee, A. R. Studart, B. G. Wang, C. H. Chen, J. Thiele, R. K. Shah, A. Krummel, and D. A. Weitz, Macromol. Rapid Commun., 31, 108 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. K. Jiang, A. Sposito, J. Liu, S. R. Raghavan, and D. L. DeVoe, Polymer, 53, 5469 (2012).

    Article  CAS  Google Scholar 

  6. M. T. Gokmen, W. V. Camp, P. J. Colver, S. A. F. Bon, and F. E. D. Prez, Macromolecules, 42, 9289 (2009).

    Article  CAS  Google Scholar 

  7. C. X. Zhao, Adv. Drug Deliv. Rev., 65, 1420 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. D. Y. Kim, S. H. Jin, S. G. Jeong, B. Lee, K. K. Kang, and C. S. Lee, Sci. Rep., 8, 8525 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. V. Romanov, R. Samuel, M. Chaharlang, A. R. Jafek, A. Frost, and B. K. Gale, Anal. Chem., 90, 10450 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. J. P. Urbanski, W. Thies, C. Rhodes, S. Amarasinghe, and T. Thorsen, Lab Chip, 6, 96 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. C. Martino, S. Berger, R. C. R. Wootton, and A. J. deMello, Lab Chip, 14, 4178 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Q. Ji, J. M. Zhang, Y. Liu, X. Li, P. Lv, D. Jin, and H. Duan, Sci. Rep., 8, 4791 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. H. Gong, B. P. Bickham, A. T. Woolley, and G. P. Nordin, Lab Chip, 17, 2899 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. M. Han, W. Lee, S. K. Lee, and S. S. Lee, Sensor. Actuat. A-Physical, 111, 14 (2004).

    Article  CAS  Google Scholar 

  15. M. R. Hasan, S. S. S. Peri, V. P. Sabane, N. Mansur, J. X. Gao, K. T. Nguyen, J. A. Weidanz, S. M. Iqbal, and V. V. Abhyankar, Biomed. Phys. Eng. Express, 4, 025015 (2018).

    Article  Google Scholar 

  16. Z. Allahyari, S. Gholizadeh, H. H. Chung, L. F. Delgadillo, and T. R. Gaborski, ACS Biomater.. Sci. Eng., 6, 959 (2020).

    Article  CAS  PubMed  Google Scholar 

  17. D. E. W. Patabadige, T. Mickleburgh, L. Ferris, G. Brummer, A. H. Culbertson, and C. T. Culbertson, Electrophoresis, 37, 1337 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. S. Gholizadeh, Z. Allahyari, R. Carter, L. F. Delgadillo, M. Blaquiere, F. N. Morin, N. Marchi, and T. R. Gaborski, Adv. Mater. Technol., 2000474 (2020).

  19. S. A. Nabavi, G. T. Vladisavljević, S. Gu, and E. E. Ekanem, Chem. Eng. Sci., 130, 183 (2015).

    Article  CAS  Google Scholar 

  20. G. Nurumbetov, N. Ballard, and S. A. F. Bon, Polym. Chem., 3, 1043 (2012).

    Article  CAS  Google Scholar 

  21. J. Wang, W. Chen, J. Sun, C. Liu, Q. Yin, L. Zhang, Y. Xianyu, X. Shi, G. Hu, and X. Jiang, Lab Chip, 14, 1673 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. L. Mei, M. Jin, S. Xie, Z. Yan, X. Wang, G. Zhou, A. Berg, and L. Shui, Lab Chip, 18, 2806 (2018).

    Article  CAS  PubMed  Google Scholar 

  23. Z. Che, T. N. Wong, and N.-T. Nguyen, Microfluid. Nanofluid., 21, 8 (2017).

    Article  CAS  Google Scholar 

  24. P. Guo, G. Chen, H. Shu, P. Li, P. Yu, C. Chang, Y. Wang, and Q. Fu, Anal. Methods, 11, 3687 (2019).

    Article  CAS  Google Scholar 

  25. M. L. Hebert, D. S. Shah, P. Blake, and S. L. Servoss, Coatings, 3, 98 (2013).

    Article  CAS  Google Scholar 

  26. J. V. Andhariya and D. J. Burgess, Expert Opin. Drug Del., 13, 593 (2016).

    Article  CAS  Google Scholar 

  27. X. Wang, E. Wenk, X. Zhang, L. Meinel, G. Vunjak-Novakovic, and D. L. Kaplan, J. Control. Release, 134, 81 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. A. L. Lewis, C. Adams, W. Busby, S. A. Jones, L. C. Wolfenden, S. W. Leppard, R. R. Palmer, and S. Small, J. Mater. Sci. Mater. Med., 17, 1193 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. M. Igartua, R. M. Hernández, A. Esquisabel, A. R. Gascón, M. B. Calvo, and J. L. Pedraz, J. Control. Release, 56, 63 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. A. Olanrewaju, M. Beaugrand, M. Yafia, and D. Juncker, Lab Chip, 18, 2323 (2018).

    Article  CAS  PubMed  Google Scholar 

  31. R. Safavieh, A. Tamayol, and D. Juncker, Microfluid. Nanofluid., 18, 357 (2015).

    Article  CAS  Google Scholar 

  32. H. W. Shim, J. H. Lee, T. S. Hwang, Y. W. Rhee, Y. M. Bae, J. S. Choi, J. Han, and C. S. Lee, Biosens. Bioelectron., 22, 3188 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. M. S. Maria, P. E. Rakesh, T. S. Chandra, and A. K. Sen, Sci. Rep., 7, 43457 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  34. L. Gervais and E. Delamarche, Lab Chip, 9, 3330 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. S. S. Latthe, C. Terashima, K. Nakata, M. Sakai, and A. Fujishima, J. Mater. Chem. A, 2, 5548 (2014).

    Article  CAS  Google Scholar 

  36. J. Zhang, H. Tian, Z. Yao, P. Hao, and N. Jiang, Exp. Fluids, 56, 179 (2015).

    Article  Google Scholar 

  37. X. Yang, X. Liu, Y. Lu, J. Song, S. Huang, S. Zhou, Z. Jin, and W. Xu, J. Phys. Chem. C, 120, 7233 (2016).

    Article  CAS  Google Scholar 

  38. D. P. Suhas, T. M. Aminabhavi, and A. V. Raghu, Appl. Clay Sci., 101, 419 (2014).

    Article  CAS  Google Scholar 

  39. D. P. Suhas, T. M. Aminabhavi, H. M. Jeong, and A. V. Raghu, RSC Adv., 5, 100984 (2015).

    Article  CAS  Google Scholar 

  40. D. P. Suhas, T. M. Aminabhavi, and A. V. Raghu, Polym. Eng. Sci., 54, 1774 (2014).

    Article  CAS  Google Scholar 

  41. A. Fatona, Y. Chen, M. Reid, M. A. Brook, and J. M. Moran-Mirabal, Lab Chip, 15, 4322 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. A. Gökaltun, Y. B. A. Kang, M. L. Yarmush, O. B. Usta, and A. Asatekin, Sci. Rep., 9, 7377 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. T. Kamperman, B. Loo, M. Gurian, S. Henke, M. Karperien, and J. Leijten, Lab Chip, 19, 1977 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. B. Marmiroli, G. Grenci, F. Cacho-Nerin, B. Sartori, E. Ferrari, P. Laggner, L. Businarob, and H. Amenitsch, Lab Chip, 9, 2063 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. A. S. Utada, A. Fernandez-Nieves, H. A. Stone, and D. A. Weitz, Phys. Rev. Lett., 99, 094502 (2007).

    Article  PubMed  CAS  Google Scholar 

  46. A. S. Utada, L. Y. Chu, A. Fernandez-Nieves, D. R. Link, C. Holtze, D. A. Weitz, MRS Bull., 32, 702 (2007).

    Article  CAS  Google Scholar 

  47. R. Pal, J. Colloid Interface Sci., 225, 359 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. K. Wang, K. Qin, Y. Lu, G. Luo, and T. Wang, AIChE J., 61, 1722 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2017R1A2B4008093), a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry Health & Welfare, Republic of Korea (HI17C0886), and the Research Fund, 2020 of The Catholic University of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Wook Choi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahn, G.Y., Choi, I., Song, M. et al. Production of Uniform Microspheres Using a Simple Microfluidic Device with Silica Capillary. Macromol. Res. 29, 82–88 (2021). https://doi.org/10.1007/s13233-021-9012-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-021-9012-9

Keywords

Navigation