Skip to main content
Log in

Biodeterioration of Roman hypogea: the case study of the Catacombs of SS. Marcellino and Pietro (Rome, Italy)

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

No information exists on phototrophs growing on the stone surfaces of the Catacombs of SS. Marcellino and Pietro (the site was only recently opened to the public in 2014). Therefore, it was decided to characterise the microbial communities and to compare them with those of the other previously studied catacombs. Moreover, a new non-invasive strategy to reduce the phototrophic growth was tested. Phototrophic microorganisms were investigated under light and confocal laser scanning microscopes from samples collected non-invasively in situ. Tests were carried out to determine the effect of the application of two essential oils (from L. angustifolia and T. vulgaris) on biofilm photosynthetic activity. Laser-induced fluorescence (LIF) and reflectance measurements in the visible range have been used to evaluate respectively, any chemical modification and discolouration on a frescoed stone that may occur after the application of the essential oils. At all the concentrations of essential oils, there was a quasi-immediate, large reduction in photosynthetic activity of the biofilms. At 10% essential oil concentration, there was no detectable photosynthetic activity after 15 min. At 1%, there was a need for two applications and after 5-day activity was undetectable. No effect of the essential oils on the substrate surface properties or colour modification of the fresco has been observed with the LIF prototype. Cyanobacterial typical of Roman catacombs were present in the sites investigated. Innovative and non-destructive strategies, involving the application of a combination of two essential oils, have been successfully tested and developed to prevent biodeterioration of these sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Albertano P (2012) Cyanobacterial biofilms in monuments and caves. In: Whitton (ed) Ecology of cyanobacteria II: their diversity in space and time. Springer, Netherlands, pp 317–343

    Chapter  Google Scholar 

  • Albertano P, Bruno L (2003) The importance of light in the conservation of hypogean monuments. In: Saiz-Jimenez (ed) Molecular biology and cultural heritage. Swets & Zeitlinger, Lisse, pp 171–177 ISBN 90 5809 555X

    Google Scholar 

  • Albertano P, Pacchiani D, Capucci E (2004) The public response to innovative strategies for the control of biodeterioration in archaeological hypogea. J Cult Herit 5(4:399–407

    Article  Google Scholar 

  • Albertano P, Bruno L, Bellezza S (2005) New strategy for the monitoring and control of cyanobacterial films on valuable lithic faces. Plant Biosyst 139:311–322

    Article  Google Scholar 

  • Barresi G, Cammarata M, Palla F (2017) Biocide. In: Palla F, Barresi G (eds) Biotechnology and conservation of cultural heritage. https://doi.org/10.1007/978-3-319-46168-7_3

    Chapter  Google Scholar 

  • Bilger W, Schreiber U, Bock M (1995) Determination of the quantum efficiency of photosystem II and of non-photochemical quenching of chlorophyll fluorescence in the field. Oecologia 102:425–432

    Article  Google Scholar 

  • Bruno L, Billi D, Bellezza S, Albertano P (2009) Cytomorphological and genetic characterization of troglophilic Leptolyngbya strains isolated from Roman hypogea. Appl Environ Microbiol 75:608–617

    Article  CAS  Google Scholar 

  • Bruno L, Bellezza S, De Leo F, Urzi C (2014a) A study for monitoring and conservation in the Roman catacombs of St. Callistus and Domitilla, Rome (Italy). In: Saiz-Jimenez (ed) The conservation of subterranean cultural heritage. CRC Press, pp 37–44 Chapter 5, ISBN 978-1-138-02694-0

  • Bruno L, Ficorella I, Valentini F, Quici L, Keshari N, Adhikary SP (2014b) Characterization of phototrophic biofilms deteriorating Indian stone monuments, their response to heat stress and development of a non-invasive remediation strategy. In: Rogerio-Candelera MA (ed) Science, technology and cultural heritage. CRC Press/Balkema, The Netherlands, pp 205–210 ISBN 978-1-138-02744-2

    Google Scholar 

  • Bruno L, Quici L, Ficorella I, Valentini F (2014c) NanoGraphene oxide: a new material for a non-invasive and non-destructive strategy to remove biofilms from rock surfaces. In: Saiz-Jimenez C (ed) The conservation of subterranean cultural heritage. CRC Press, Taylor & Francis Group, London, pp 125–130, ISBN 978–1–138-02694-0. https://doi.org/10.1201/b17570-17s2.0-84958762820

    Chapter  Google Scholar 

  • Bruno L, Valle V (2017) Effect of white and monochromatic lights on cyanobacteria and biofilms from Roman Catacombs. Int Biodeter Biodegr 123:286-295

    Article  Google Scholar 

  • Bruno L, Valle V, Gismondi A, Di Marco G, Canini A (2018) Applicazione di oli essenziali come metodo non­-invasivo per il controllo del biodeterioramento di beni culturali in pietra. Notiz Soc Bot Ital 2:6–7

    Google Scholar 

  • Castenholz RW (2001) Phylum BX. Cyanobacteria. Oxygenic photosynthetic bacteria. In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 1, 2nd edn. Springer, New York, pp 473–487

    Chapter  Google Scholar 

  • Chelius MK, Beresford G, Horton H, Quirk M, Selby G, Simpson RT, Horrocks R, Moore JC (2009) Impacts of alterations of organic inputs on the bacterial community within the sediments of wind cave, South Dakota, USA. Int J Speleol 38:1–10

    Article  Google Scholar 

  • Fernandes C, Barros S, Galhano V, Geraldes AM (2014) Searching for algaecide or algaestatic effects of several plant extracts on phytoplankton: preliminary results. Br Biotechnol J 4(10):1077–1087

    Article  Google Scholar 

  • Giovannini D, Gismondi A, Basso L, Canuti L, Braglia R, Canini A, Mariani F, Cappelli G (2016) Lavandula angustifolia Mill. Essential oil exerts antibacterial and anti-inflammatory effect in macrophage mediated immune response to Staphylococcus aureus. Immunol Investig 45(1):11–28

    Article  CAS  Google Scholar 

  • Guiamet PS, de la Paz NJ, Arenas PM, Gómez de Saravia SG (2008) Differential sensitivity of Bacillus sp. isolated from archive materials to plant extracts. Pharmacologyonline 3:649–658

    Google Scholar 

  • Hernández-Máriné M, Clavero E, Roldán M (2003) Why there is such luxurious growth in the hypogean environments. Algol Stud 109(1):229–239

    Article  Google Scholar 

  • Hsieh P, Pedersen JZ, Bruno L (2014) Photoinhibition of cyanobacteria and its application in cultural heritage conservation. Photochem Photobiol 90:533–543

    Article  CAS  Google Scholar 

  • Kim AR, Kim HS, Park SO (2011) Measuring of the perceptibility and acceptability in various color quality measures. J Opt Soc Korea 15(3):310–317

    Article  Google Scholar 

  • Krakova L, De Leo F, Bruno L, Pangallo D, Urzì C (2015) Complex bacterial diversity in the white biofilms of St. Callistus catacombs in Rome evidenced by different investigation strategies. Environ Microbiol 17(5):1738–1752

    Article  CAS  Google Scholar 

  • Mann CM, Markham JL (1998) A new method for determining the minimum inhibitory concentration of essential oils. J Appl Microbiol 84:538–544

    Article  CAS  Google Scholar 

  • Marshall WA, Chalmers MO (1997) Airborne dispersal of Antarctic terrestrial algae and cyanobacteria. Ecography 20(6):585–594

    Article  Google Scholar 

  • Martinez JR, Nieto-Villena A, de la Cruz-Mendoza JA, Ortega-Zarzosa G, Guerrero AL (2017) Monitoring the natural aging degradation of paper by fluorescence. J Cult Herit 26:22–27. https://doi.org/10.1016/j.culher.2017.01.011

    Article  Google Scholar 

  • Moghimi R, Aliahmadi A, Rafati H (2017) Antibacterial hydroxypropyl methyl cellulose edible films containing nanoemulsions of Thymus daenensis essential oil for food packaging. Carbohydr Polym 175:241–248

    Article  CAS  Google Scholar 

  • Nevin A, Spoto G, Anglos D (2012) Laser spectroscopies for elemental and molecular analysis in art and archeology. Appl Phys A Mater Sci Process 106(2):339–361

    Article  CAS  Google Scholar 

  • Palombi L, Alderighi D, Cecchi G, Raimondi V, Toci G, Lognoli D (2013) A fluorescence LIDAR sensor for hyper-spectral time-resolved remote sensing and mapping. Opt Express 21:14737–14746

    Article  Google Scholar 

  • Pozo-Antonio JS, Montojo C, Lopez de Silanes ME, de Rosario I, Rivas T (2017) In situ evaluation by colour spectrophotometry of cleaning and protective treatments in granitic cultural heritage. Int Biodeterior Biodegrad 123:251–261

    Article  CAS  Google Scholar 

  • Puškárová A, Bučková M, Kraková, Pangallo D, Kozics K (2017) The antibacterial and antifungal activity of six essential oils and their cyto/genotoxicity to human HEL 12469 cells. Sci Rep 7(8211):1–11

    Google Scholar 

  • Rippka R, Deruelles J, Waterbury B, Herdman M, Stanier R (1979) Generic assignments, strains histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61

    Google Scholar 

  • Ruffolo SA, De Leo F, Ricca M, Arcudi A, Silvestri C, Bruno L, Urzì C, La Russa MF (2017) Medium-term in situ experiment by using organic biocides and titanium dioxide for the mitigation of microbial colonization on stone surfaces. Int Biodeterior Biodegrad 123:17–26

    Article  CAS  Google Scholar 

  • Saiz-Jimenez C, Cuezva S, Jurado V, Fernandez-Cortes A, Porca E, Benevante D, Cañaveras JC, Sanchez-Moral S (2011) Paleolithic art in peril: policy and science collide at Altamira Cave. Science 334:42–43

    Article  CAS  Google Scholar 

  • Sanchez-Moral S, Luque S, Cuezva S, Soler V, Benavente D, Laiz L, Gonzàlez JM, Saiz-Jimenez C (2005) Deterioration of building materials in Roman catacombs: the influence of visitors. Sci Total Environ 349:260–276

    Article  CAS  Google Scholar 

  • Sanchez-Moral S, Cañaveras JC, Benavente D, Fernandez-Cortes A, Cuezva S, Elez J, Jurado V, Rogerio-Candelera MA, Saiz-Jimenez C (2018) A study in the state of conservation of the Roman Necropolis of Carmona (Sevilla, Spain). J Cult Herit 34:185–197

    Article  Google Scholar 

  • Sanmartín P, Villa F, Polo A, Silva B, Prieto B, Cappitelli F (2015) Rapid evaluation of three biocide treatments against the cyanobacterium Nostoc sp. PCC 9104 by color changes. Ann Microbiol 2–65

  • Sanmartín P, De Araujo A, Vasanthakumar A (2018) Melding the old with the new: trends in methods used to identify, monitor and control microorganisms on cultural heritage materials. Microb Ecol 76:64–80

    Article  Google Scholar 

  • Sasso S, Miller AZ, Rogerio-Candelera MA, Cubero B, Coutinho ML, Scrano L, Bufo SA (2016) Potential of natural biocides for biocontrolling phototrophic colonization on limestone. Int Biodeterior Biodegrad 107:102–110

    Article  CAS  Google Scholar 

  • Schreiber U, Bilger W (1993) Progress in chlorophyll fluorescence research: major developments during the past years in retrospect. Prog Bot 54:151–173

    CAS  Google Scholar 

  • Spizzichino V, Angelini F, Caneve L, Colao F, Corrias R, Ruggiero L (2015) In situ study of modern synthetic materials and pigments in contemporary paintings by laser-induced fluorescence scanning. Stud Conserv 60(1):178–184

    Article  Google Scholar 

  • Stupar M, Grbić MLJ, Džamić A, Unković N, Ristić M, Jelikić A, Vukojević J (2014) Antifungal activity of selected essential oils and biocide benzalkonium chloride against the fungi isolated from cultural heritage objects. S Afr J Bot 93:118–124

    Article  CAS  Google Scholar 

  • Targowski P, Walczak M, Pouli P (2017) Lasers in the Conservation of Artworks XI. In: Targowski P, Walczak M, Pouli P (eds) Proceedings of the International Conference LACONA XI, Kraków, Poland, 20–23 September 2016, NCU Press, Toruń. https://doi.org/10.12775/3875-4

  • Toreno G, Isola D, Meloni P, Carcangiu G, Selbmann L, Onofri S, Caneva G, Zucconi L (2018) Biological colonization on stone monuments: a new low impact cleaning method. J Cult Herit 30:100–109

    Article  Google Scholar 

  • UNI EN 15886 (2010) Conservation of cultural property—test methods—colour measurement of surfaces. UNI Ente Nazionale Italiano di Unificazione

  • Urzì C, De Leo F (2001) Sampling with adhesive tape strips: an easy and rapid method to monitor microbial colonization on monument surfaces. J Microbiol Methods (44):1–11

  • Urzì C, De Leo F, Bruno L, Albertano P (2010) Microbial diversity in Paleolithic Caves: a study case on the phototrophic biofilms of the cave of bats (Zuheros, Spain). Microb Ecol 60:116–129

    Article  Google Scholar 

  • Urzì C, De Leo F, Bruno L, Pangallo D, Krakova L (2014) New species description, biomineralization processes and biocleaning applications of Roman catacombs-living bacteria. In: Saiz-Jimenez C (ed) The conservation of subterranean cultural heritage. CRC Press, Taylor & Francis Group, London, pp 65–72, ISBN 978-1-138-02694-0. https://doi.org/10.1201/b17570-10

    Chapter  Google Scholar 

  • Urzì C, De Leo F, Krakova L, Pangallo D, Bruno L (2016) Effects of biocide treatments on the biofilm community in Domitilla’s catacombs in Rome. Sci Total Environ 572(1):252–262

    Article  Google Scholar 

  • Zammit G, Billi D, Albertano P (2012) The subaerophytic cyanobacterium Oculatella subterranea (Oscillatoriales, Cyanophyceae) gen. et sp. nov.: a cytomorphological and molecular description. Eur J Phycol 47(4):341–354

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the ‘Pontificia Commissione of Archeologia Sacra’ for the permission to investigate the Catacombs of SS. Marcellino and Pietro and the centre ‘CMA-P Albertano’ for the use of the CLSM.

Funding

The work was partially funded by the project ADAMO in the frame of DTC (Technological District for Cultural Heritage) Lazio Det.reg. G08622.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Bruno.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants and/or animals

No humans or animals were used in this work.

Informed consent

N/A

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bruno, L., Rugnini, L., Spizzichino, V. et al. Biodeterioration of Roman hypogea: the case study of the Catacombs of SS. Marcellino and Pietro (Rome, Italy). Ann Microbiol 69, 1023–1032 (2019). https://doi.org/10.1007/s13213-019-01460-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-019-01460-z

Keywords

Navigation