Skip to main content

Abstract

Biodeterioration represents a revealing problem for the conservation of cultural heritage. It can be identified as a complex interaction within the ecosystem of a microbial community and its substrate and involves physical and chemical alterations resulting from biological and metabolic activity. Designing a diagnostic approach for evaluating the extent of the damage, identifying the biological community, and opting for an efficient methodology aimed at eliminating deteriogens is equally complicated. The correct approach would require understanding the nature of the biodeterioration and implementing methodologies respectful of human health which, however, avoid the indiscriminate killing of organisms. Different preventive or remedial methods are used for this purpose. They include well-known physical and mechanical methods with their operating limitations and the most frequently used chemical methods, supported by biocide products for the elimination or growth inhibition of target organisms. Unfortunately, most – if not all – biocides applied on artworks are toxic or otherwise polluting substances, and their degradation is frequently difficult, being persistent in the natural environment. Moreover, due to the fact that there are no specific formulations destined for conservation practice, commercial biocide products come from the medical or agricultural field, carrying with them their well-known negative effects. Research in this sector focuses on ways to replace toxic products with natural molecules that do not cause adverse effects, in addition to the application of alternative methods and the support of formulations for safe nontoxic novel compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    CLSI Clinical and Laboratory Standard Institute; EUCAST European Committee on Antimicrobial Susceptibility Testing; OIE World Organization for Animal Health.

References

  • Abdel-Maksoud G, El-Amin A-R, Afifi F (2014) Insecticidal activity of Cinnamomum cassia extractions against the common Egyptian mummies’ insect pest (Dermestes maculatus). Int J Conserv Sci 5(3):355–368

    Google Scholar 

  • Acharya D, Rios JL, Rai M (2011) Naturally occurring biocides in the food industry. In: Rai M, Chikindas M (eds) Natural antimicrobials in food safety and quality. CABI E-books on agriculture and the applied life sciences from CAB International, pp 1–9. dx.doi.org/10.1079/9781845937690.0001

  • Adamo M, Magaudda G, Nisini PT, Tronelli G (2003) Susceptibility of cellulose to attack by cellulolytic microfungi after gamma irradiation and ageing. Restaurator 24(3):145–151. doi:10.1515/REST.2003.145

    Google Scholar 

  • Afifi HAM (2012) Comparative efficacy of some plant extracts against fungal deterioration of stucco ornaments in the Mihrab of Mostafa Pasha Ribate, Cairo, Egypt. Am J Biochem Mol Biol 2(1):40–47. doi:10.3923/ajbmb.2011

    Article  Google Scholar 

  • Aflori M, Simionescu B, Bordianu I-E, Sacarescu L, Varganici C-D, Droftei F, Nicolescu A, Olaru M (2013) Silsesquioxane-based hybrid nanocomposites with methacrylate units containing titania and/or silver nanoparticles as antibacterial/antifungal coatings for monumental stones. Mat Sci Eng B 178(19):1339–1346. doi:10.1016/j.mseb.2013.04.004

    Article  CAS  Google Scholar 

  • Al-Hussaini R, Mahasneh AM (2009) Microbial growth and quorum sensing antagonist activities of herbal plants extracts. Molecules 14(9):3425–3435. doi:10.3390/molecules14093425

    Article  CAS  PubMed  Google Scholar 

  • Alonso D, Khalil Z, Satkunanthan N, Livett BG (2003) Drugs from the sea: conotoxins as drug leads for neuropathic pain and other neurological conditions. Mini Rev Med Chem 3(7):785–787

    Article  CAS  PubMed  Google Scholar 

  • Ascaso C, Wierzchos J, Souza-Egipsy V, de los Rios A, Delgado Rodrigues J (2002) In situ evaluation of the biodeteriorating action of microorganisms and the effects of biocides on carbonate rock of the Jeronimos Monastery (Lisbon). Int Biodeter Biodegr 49(1):1–12. doi:10.1016/S0964-8305(01)00097-X

    Article  Google Scholar 

  • Bacci L, Lima JKA, Araùjo APA, Blank AF, Silva IMA, Santos AA, Santos ACC, Alves PB, Picanço MC (2015) Toxicity, behavior impairment, and repellence of essential oils from pepper-rosmarin and patchouli to termites. Entomol Exp Appl 156(1):66–76. doi:10.1111/eea.12317

    Article  CAS  Google Scholar 

  • Balouiri M, Sadiki M, Ibnsouda SK (2016) Methods for in vitro evaluating antimicrobial activity: a review. J Pharm Anal 6(2):71–79. doi:10.1016/j.jpha.2015.11.005

    Article  Google Scholar 

  • Barresi G, Carlo E, Trapani MR, Parisi MG, Chillè C, Mulè MF, Cammarata M, Palla F (2015) Marine organisms as source of bioactive molecules applied in restoration projects. Herit Sci 3(3):17–20

    Article  CAS  Google Scholar 

  • Bastian F, Alabouvette C (2009) Lights and shadows on the conservation of a rock art cave: the case of Lascaux Cave. Int J Speleol 38(1):55–60. doi:10.5038/1827-806X.38.1.6

    Article  Google Scholar 

  • Bauer AW, Kirby WM, Sherris JC, Turck M (1966) Antibiotic susceptibility by standardized single disk method. Am J Clin Pathol 45(4):493–496

    CAS  PubMed  Google Scholar 

  • Bellissima F, Bonini M, Giorgi R, Baglioni P, Barresi G, Mastromei G, Perito B (2014) Antibacterial activity of silver nanoparticles grafted on stone surface. Environ Sci Pollut Res 21(23):13278–13286. doi:10.1007/s11356-013-2215-7

    Article  CAS  Google Scholar 

  • Bergmann W, Feeney RJ (1950) The isolation of a new thymine pentoside from sponges. J Am Chem Soc 72(6):2809–2810. doi:10.1021/ja01162a543

    Article  CAS  Google Scholar 

  • Bergmann W, Feeney RJ (1951) Contributions to the study of marine products. XXXII. The nucleosides of sponges. I. J Org Chem 16(6):981–987. doi:10.1021/jo01146a023

    Article  CAS  Google Scholar 

  • Blanchoud H, Farrugia F, Mouchel JM (2004) Pesticide uses and transfers in urbanised catchments. Chemosphere 55(6):905–913

    Article  CAS  PubMed  Google Scholar 

  • Blunt JW, Copp BR, Munro MHG, Northcote PT, Prinsep MR (2006) Marine natural products. Nat Prod Rep 23:26–78

    Article  CAS  PubMed  Google Scholar 

  • Borderie F, Tête N, Cailhol D, Alaoui-Sehmer L, Bousta F, Rieffel D, Aleya L, Alaoui-Sossé B (2014) Factors driving epilithic algal colonization in show caves and new insights into combating biofilm development with UV-C treatments. Sci Total Environ 484:43–52. doi:10.1016/j.scitotenv.2014.03.043

    Article  CAS  PubMed  Google Scholar 

  • Borrego S, Valdés O, Vivar I, Lavin P, Guiamet P, Battistoni P, Gómez de Saravia S, Borges P (2012) Essential oils of plants as biocides against microorganisms isolated from Cuban and Argentine Documentary heritage. ISRN Microbiol 2012:1–7. doi:10.5402/2012/826786

    Google Scholar 

  • Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3(3):238–250. doi:10.1038/nrmicro1098

    Article  CAS  PubMed  Google Scholar 

  • Calvo MA, Arosemena EL, Shiva C, Adelantado C (2001) Antimicrobial activity of plant natural extracts and essential oils. In: Méndez-Villas A (ed) Science against microbial pathogens: communicating current research and technological advances. Formatex Research Center, Spain, pp 1179–1185

    Google Scholar 

  • Caneva G, Nugari MP, Salvadori O (1994) La biologia nel restauro. Nardini Editore, Firenze

    Google Scholar 

  • Caneva G, Nugari MP, Salvadori O (2008) Plant biology for cultural heritage: biodeterioration and conservation. Getty Publications, Los Angeles

    Google Scholar 

  • Cappitelli F, Abbruscato P, Foladori P, Zanardini E, Ranalli G, Principi P, Villa F, Polo A, Sorlini C (2009) Detection and elimination of cyanobacteria from frescoes: the case of the St. Brizio Chapel (Orvieto Cathedral, Italy). Microb Ecol 57(4):633–639. doi:10.1007/s00248-008-9441-4

    Article  CAS  PubMed  Google Scholar 

  • Cappitelli F, Villa F, Sorlini C (2011) New environmentally friendly approaches against biodeterioration of outdoor cultural heritage. In: Charola AE, McNamara C, Koestler RJ (eds) Biocolonization of stone: Control and preventive methods. Proceedings from the MCI workshop Series. Smithsonian contribution to museum conservation 2. Smithsonian Institution Scholarly Press, Washington DC, USA, pp 51–58

    Google Scholar 

  • Carrillo-González R, Martínez-Gómez MA, González-Chávez MD, Mendoza Hernández JC (2016) Inhibition of microorganisms involved in deterioration of an archaeological site by silver nanoparticles produced by a green synthesis method. Sci Total Environ S0048–9697(16):30320–30325. doi:10.1016/j.scitotenv.2016.02.110

    Google Scholar 

  • Carté BK (1996) Biomedical potential of marine natural products. Bioscience 46(4):271–287. doi:10.2307/1312834

    Article  Google Scholar 

  • Casiglia S, Bruno M, Senatore F (2014) Activity against microorganisms affecting cellulosic objects of the volatile constituents of Leonotis nepetaefolia from Nicaragua. Nat Prod Commun 9(11):1637–1639

    PubMed  Google Scholar 

  • Casiglia S, Bruno M, Scandolera E, Senatore F, Senatore (2015), Influence of harvesting time on composition of essential oil of Thymus capitatus (L.) Hoffmanns. & Link. growing wild in northern Sicily and its activity on microorganisms affecting historical art crafts. Arab J Chem. 5 in press. doi:10.1016/j.arabjc.2015.05.017

  • Chapman JS (2003) Biocide resistance mechanism. Int Biodet Biodeg 51(2):133–138. doi:10.1016/S0964-8305(02)00097-5

    Article  CAS  Google Scholar 

  • Chun W, DeJun Y, ShiLin H, Qun T (2000) Determination of toxicity of plant essential oils to museum insect pests. J Southwest Agric Univ 22(6):494–495

    Google Scholar 

  • Ćirković I, Jovalekić M, Jegorović B (2012) In vitro antibacterial activity of garlic and synergism between garlic and antibacterial drugs. Arch Biol Sci 64(4):1369–1375. doi:10.2298/ABS1204369C

    Article  Google Scholar 

  • Damalas CA, Eleftherohorinos I (2011) Pesticide exposure, safety issues, and risk assessment indicators. Int J Environ Res Public Health 8(5):1402–1419. doi:10.3390/ijerph8051402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de la Paz J, Larionova M, Maceira MA, Borrego SF, Echevarría E (2006) Control of biodeterioration using a fraction isolated from leaves of Ricinus communis linn. Pharmacologyonline 3:462–466

    Google Scholar 

  • Discroll AJ, Bhat N, Karron RA, O’Brien KL, Murdoch DR (2012) Disk diffusion bioassay for the detection of antibiotic activity in body fluids: applications for the Pneumonia etiology research for child health project. Clin Infect Dis 54(2):S159–S164. doi:10.1093/cid/cir1061

    Google Scholar 

  • Ditaranto N, van der Werf ID, Picca RA, Sportelli C, Gianossa LC, Bonerba E, Tantillo G, Sabbatini L (2015) Characterization and behaviour of ZnO-based nanocomposites designed for the control of biodeterioration of patrimonial stoneworks. New J Chem 39:6836–6843. doi:10.1039/C5NJ00527B

    Article  CAS  Google Scholar 

  • Doehne E, Price CA (2010) Stone Conservation: An Overview of Current Research. The Getty Conservation Institute, Los Angeles

    Google Scholar 

  • Domig KJ, Mayrhofer S, Zitz U, Mair C, Petersson A, Amtmann E, Mayer EK, Kneifel W (2007) Antibiotic susceptibility testing of Bifidobacterium thermophilum and Bifidobacterium pseudolongum strains: Broth microdilution vs. agar disc diffusion assay. Int J Food Microbiol 120:191–195. doi:10.1016/j.ijfoodmicro.2007.07.064

    Article  CAS  PubMed  Google Scholar 

  • Donia M, Hamann MT (2003) Marine natural products and their potential applications as anti-infective agents. Lancet Infect Dis 3:338–348

    Article  CAS  PubMed  Google Scholar 

  • Dubey NK, Tripathi P, Singh HB, Kumar S, Kukreja AK, Dwivedi S, Singh AK (2000) Prospects of some essential oils as antifungal agents. Int J Med Arom Plant Sci 22(1):350–354

    CAS  Google Scholar 

  • Essa AM, Khallaf MK (2014) Biological nanosilver particles for the protection of archaeological stones against microbial colonization. Int Biodeter Biodegr 94:31–37. doi:10.1016/j.ibiod.2014.06.015

    Article  CAS  Google Scholar 

  • Faulkner DJ (2002) Marine natural products. Nat Prod Rep 19(1):1–48

    Article  CAS  PubMed  Google Scholar 

  • Feng W, Zheng X (2007) Essential oils to control Alternaria alternata in vitro and in vivo. Food Control 18(9):1126–1130. doi:10.1016/j.foodcont.2006.05.017

    Article  CAS  Google Scholar 

  • Fernandes P (2006) Applied microbiology and biotechnology in the conservation of cultural heritage materials. Appl Microbiol Biotechnol 73(2):291–296. doi:10.1007/s00253-006-0599-8

    Article  CAS  PubMed  Google Scholar 

  • Fierascu I, Ion RM, Radu M, Dima SO, Bunghez IR, Avramescu SM, Fierascu RC (2014) Comparative study of antifungal effect of natural extracts and essential oils of Ocinum basilicum on selected artefact. Rev Roum Chim 59(3–4):207–211

    Google Scholar 

  • Fleeger JW, Carman KR, Nisbet RM (2003) Indirect effects of contaminants in aquatic ecosystems. Sci Total Environ 317:207–233

    Article  CAS  PubMed  Google Scholar 

  • Fonseca AJ, Pina F, Macedo MF, Leal N, Romanowska-Deskins A, Laiz L, Gomez-Bolea A, Saiz-Jimenez C (2010) Anatase as an alternative application for preventing biodeterioration of mortars: evaluation and comparison with other biocides. Int Biodeter Biodegr 64(5):388–396. doi:10.1016/j.ibiod.2010.04.006

    Article  CAS  Google Scholar 

  • Fu G, Vary PS, Lin CT (2005) Anatase TiO2 nanocomposites for antimicrobial coatings. J Phys Chem B 109(18):8889–8898. doi:10.1021/jp0502196

    Article  CAS  PubMed  Google Scholar 

  • Ghalem BR, Mohamed B (2008) Antibacterial activity of leaf essential oils of Eucalyptus globulus and Eucalyptus camaldulensis. Afr J Pharm Pharmacol 2(10):211–215

    Google Scholar 

  • Gómez de Saravia SG, de la Paz Naranjo J, Guiamet P, Arenas P, Borrego S (2008) Biocide activity of natural extracts against microorganisms affecting archives. Bol Latinoam Caribe Plant Med Aromat 7(1):25–29

    Google Scholar 

  • Gómez-Ortíz N, De la Rosa-García S, González-Gómez W, Soria-Castro M, Quintana P, Oskam G, Ortega-Morales B (2013) Antifungal coatings based on Ca(OH)2 mixed with ZnO/TiO2 nanomaterials for protection of limestone monuments. ACS Appl Mater Interfaces 5(5):1556–1565. doi:10.1021/am302783h

    Article  PubMed  CAS  Google Scholar 

  • Gordon EM, Barrett RW, Dower WJ, Fodor SP, Gallop MA (1994) Applications of combinatorial technologies to drug discovery. 2. Combinatorial organic synthesis, library screening strategies, and future directions. J Med Chem 37(10):1385–1401. doi:10.1021/jm00036a001

    Article  CAS  PubMed  Google Scholar 

  • Guiamet PS, Gómez de Saravia SG (2005) Laboratory studies of biocorrosion control using traditional and environmentally friendly biocides: an overview. Latin Am Appl Res 35(4):295–300

    CAS  Google Scholar 

  • Guiamet PS, Gomez de Saravia SG, Arenas P, Perez ML, de la Plaz J, Borrego SF (2006) Natural products isolated from plants used in biodeterioration control. Pharmacologyonline 3:537–544. doi:10.5402/2012/826786

    Google Scholar 

  • Guiamet PS, de la Paz NJ, Arenas PM, Gómez de Saravia SG (2008) Differential sensitivity of Bacillus sp. isolated from archive materials to plant extracts. Pharmacologyonline 3:649–658

    Google Scholar 

  • Gutarowska B, Skora J, Zduniak K, Rembisz D (2012) Analysis of the sensitivity of microorganisms contaminating museums and archives to silver nanoparticles. Int Biodeter Biodegr 68:7–17. doi:10.1016/j.ibiod.2011.12.002

    Article  CAS  Google Scholar 

  • Gutarowska B, Pietrzak K, Machnowsky W, Danielewicz D, Szynkowska M, Konca P, Surma-Slusarska B (2014) Application of silver nanoparticles for disinfection of materials to protect historical objects. Curr Nanosci 10(2):277–286. doi:10.2174/15734137113096660121

    Article  CAS  Google Scholar 

  • Hahn S, Schneider K, Gartiser S, Heger W, Mangelsdorf I (2010) Consumer exposure to biocide – identification of relevant source and evaluation of possible health effects. Environ Health 9(7):2–11. doi:10.1186/1476-069X-9-7

    Google Scholar 

  • Hancock REW, Scott MG (2000) The role of antimicrobial peptides in animal defenses. Proc Natl Acad Sci U S A 97(16):8856–8861. doi:10.1073/pnas.97.16.8856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jimeno JMA (2002) Clinical armamentarium of marine-derived anti-cancer compounds. Anticancer Drugs 13(Suppl 1):S15–S19

    CAS  PubMed  Google Scholar 

  • Jorgensen JH, Ferraro MJ (2009) Antimicrobial susceptibility testing: a review of general principles and contemporary practices. Clin Infect Dis 49(11):1749–1755. doi:10.1086/647952

    Article  CAS  PubMed  Google Scholar 

  • Kalemba D, Kunicka A (2003) Antimicrobial and antifungal properties of essential oils. Rev Curr Med Chem 10(10):813–829. doi:10.2174/0929867033457719

    Article  CAS  Google Scholar 

  • Kinghorn AD (2008) Drug discovery from natural products. In: Lemke TL, Williams DA (eds) Foye’s Principles of Medicinal Chemistry, 6th edn. Wolters Kluwer/Williams and Wilkins, Philadelphia, pp 12–25

    Google Scholar 

  • Knetsch MLW, Koole LH (2011) New strategies in the development of antimicrobial coatings: the example of increasing usage of Silver and Silver Nanoparticles. Polymers 3(1):340–366. doi:10.3390/polym3010340

    Article  CAS  Google Scholar 

  • Koestler RJ, Santoro ED (1990) Biodeterioration in museums-observations. Biodeter Res 3:505–509. doi:10.1007/2F978-1-4757-945. Springer US

  • Koestler RJ, Parreira E, Santoro ED, Noble P (1993) Visual effects of selected biocides on easel painting materials. Stud Conserv 38(4):265–273. doi:10.2307/1506370

    Google Scholar 

  • Kumar R, Kumar AV (1999) Biodeterioration of stone in tropical environments. An Overview. The Getty Conservation Institute, Los Angeles

    Google Scholar 

  • Kumar NS, Simon N (2016) In vitro antibacterial activity and phytochemical analysis of Gliricidia sepium (L.) leaf extracts. J Pharmacogn Phytochem 5(2):131–133

    CAS  Google Scholar 

  • Kumar A, Kumar Vemula P, Ajayan PM, John G (2008) Silver-nanoparticles-embedded antimicrobial paints based on vegetable oil. Nat Mater 7:236–241. doi:10.1038/nmat2099

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Shukla R, Singh P, Dubey NK (2010) Chemical composition, antifungal and antiaflatoxigenic activities of Ocimum sanctum L. essential oil and its safety assessment as plant based antimicrobial. Food Chem Toxicol 48(2):539–543. doi:10.1016/j.fct.2009.11.028

    Article  CAS  PubMed  Google Scholar 

  • La Russa MF, Ruffolo SA, Rovella N, Belfiore CM, Palermo AM, Guzzi MT, Crisci GM (2012) Multifunctional TiO2 coatings for cultural heritage. Prog Org Coat 74(1):186–191. doi:10.1016/j.porgcoat.2011.12.008

    Article  CAS  Google Scholar 

  • Lavin P, Gómez de Saravia S, Guiamet P (2016) Scopulariopsis sp. and Fusarium sp. in the Documentary Heritage: evaluation of their biodeterioration ability and antifungal effect of two essential oils. Microb Ecol 71(3):628–633. doi:10.1007/s00248-015-0688-2

    Article  CAS  PubMed  Google Scholar 

  • Magaudda G (2004) The recovery of biodeteriorated books and archive documents through gamma radiation: some considerations on the results achieved. J Cult Herit 5(1):113–118. doi:10.1016/j.culher.2003.07.003

    Article  Google Scholar 

  • Mansour M, Ahmed H (2012) Occurrence of fungi on some deteriorated ancient Egyptian materials and their controlling by ecofriendly products. EJARS 2(2):91–101

    Google Scholar 

  • Marcotte S, Estel L, Leboucher S, Minchin S (2014) Occurrence of organic biocides in the air and dust at the Natural History Museum of Rouen, France. J Cult Herit 15(1):68–72. doi:10.1016/j.culher.2013.01.005

    Article  Google Scholar 

  • Marshall BM, McMurry LM (2005) Biocides and resistance. In: White DG, Alekshun MN, McDermott PF (eds) Frontiers in Antimicrobial Resistance: a Tribute to Stuart B. Levy. ASM Press, Washington, D.C., pp 174–190. doi:10.1128/9781555817572.ch12

    Chapter  Google Scholar 

  • Martin-Sanchez PM, Nováková A, Bastian F, Alabouvette C, Saiz-Jimenez C (2012) Use of biocides for the control of fungal outbreaks in subterranean environments: the case of the Lascaux Cave in France. Environ Sci Technol 46(7):3762–3770

    Article  CAS  PubMed  Google Scholar 

  • Maxim D, Bucşa L, Moza MI, Chachula O (2012) Preliminary antifungal investigation of ten biocides against moulds from two different church frescos. Ann Rom Soc Cell Biol 17(2):139

    Google Scholar 

  • Michaelsen A, Pinzari F, Barbabietola N, Piñar G (2013) Monitoring the effects of different conservation treatments on paper- infecting fungi. Int Biodeter Biodegr 84(100):333–341. doi:10.1016/j.ibiod.2012.08.005

    Article  CAS  Google Scholar 

  • National Committee for Clinical Laboratory Standards (2000) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard M7-A5. National Committee for Clinical Laboratory Standards, Wayne 20(2)

    Google Scholar 

  • Oliva R, Salvini A, Di Giulio G, Capozzoli L, Fioravanti M, Giordano C, Perito B (2015) TiO2-Oligoaldaramide nanocomposites as efficient core-shell system for wood preservation. J Appl Polym Sci 132(23). doi:10.1002/app.42047

  • Orlita A (2004) Microbial biodeterioration of leather and its control: a review. Int Biodeter Biodegr 53(3):157–163. doi:10.1016/S0964-8305(03)00089-1

    Article  CAS  Google Scholar 

  • Otero- González AJ, Magalhães BS, Garcia-Villarino M, López-Abarratequi C, Sousa DA, Dias SC, Franco OL (2010) Antimicrobial peptides from marine invertebrates as a new frontiers for microbial infection control. FASEB 24(5):1320–1334. doi:10.1096/fj.09-143388

    Article  CAS  Google Scholar 

  • Paulus W (2005) Directory of microbicides for the protection of materials: a handbook., Springer Science & Business Media

    Book  Google Scholar 

  • Pereira E, Santos A, Reis F, Tavares RM, Baptista P, Lino-Neto T, Almeida-Aguiar C (2013) A new effective assay to detect antimicrobial activity of filamentous fungi. Microbiol Res 168(1):1–5. doi:10.1016/j.micres.2012.06.008

    Article  CAS  PubMed  Google Scholar 

  • Pointing SB, Jones EBG, Jones AM (1998) Decay prevention in waterlogged archaeological wood using gamma radiation. Int Biodeter Biodegr 42(1):17–24. doi:10.1016/S0964-8305(98)00041-9

    Article  Google Scholar 

  • Pomponi SA (1999) The bioprocess-technological potential of the sea. J Biotechnol 70(1–3):5–13. doi:10.1016/S0168-1656(99)00053-X

    Article  CAS  Google Scholar 

  • Proksch P, Edrada R, Ebel R (2002) Drugs from the seas – current status and microbiological implications. Appl Microbiol Biotechnol 59(2–3):125–134. doi:10.1007/s00253-002-1006-8

    CAS  PubMed  Google Scholar 

  • Rai A, Prabhune A, Perry CC (2010) Antibiotic mediated synthesis of gold nanoparticles with potent antimicrobial activity and their application in antimicrobial coatings. J Mater Chem 20:6789–6798. doi:10.1039/C0JM00817F

    Article  CAS  Google Scholar 

  • Rakotonirainy MS, Lavédrine B (2005) Screening for antifungal activity of essential oils and related compounds to control the biocontamination in libraries and archives storage areas. Int Biodeter Biodegr 55(2):141–147. doi:10.1016/j.ibiod.2004.10.002

    Article  CAS  Google Scholar 

  • Ranalli G, Zanardini E, Pasini P, Roda A (2003) Rapid biodeteriogen and biocide diagnosis on artworks: a bioluminescent low-light imaging technique. Ann Microbiol 53(1):1–14

    CAS  Google Scholar 

  • Rives V, Talegon JG (2006) Decay and Conservation of Building Stones on Cultural Heritage Monuments. Mater Sci Forum 514:1689–1694. doi:10.4028/www.scientific.net/MSF.514-516.1689

    Article  Google Scholar 

  • Roman C, Diaconescu R, Scripcariu L, Grigoriu A (2013) Biocides used in preservation, restoration and conservation of the paper. Eur J Sci Theol 9(4):263–271

    Google Scholar 

  • Rotolo V, Barresi G, Di Carlo E, Giordano A, Lombardo G, Crimi E, Costa E, Bruno M, Palla F (2016) Plant extracts as green potential strategies to control the biodeterioration of Cultural Heritage. Int J Conserv Sci 7(special issue 2):839–846

    Google Scholar 

  • Ruffolo SA, La Russa MF, Malagodi M, Oliviero Rossi C, Palermo AM, Crisci GM (2010) ZnO and ZnTiO3 nanopowders for antimicrobial stone coating. Appl Phys A 100(3):829–834. doi:10.1007/s00339-010-5658-4

    Article  CAS  Google Scholar 

  • Ruffolo SA, Macchia A, La Russa MF, Mazza L, Urzì C, De Leo F, Barberio M, Crisci GM (2013) Marine antifouling for underwater archaeological sites: TiO2 and Ag-doped TiO2. Int J Photoenergy 2013:1–6. doi:10.1155/2013/251647

    Article  CAS  Google Scholar 

  • Sahab Ahmed F, Sidkey Nagwa M, Abed Nermine N, Mounir A (2014) Studies on indoor air quality in the repositories of the National Library and Archives of Egypt. IJSR 3(11):2122–2128

    Google Scholar 

  • Şahin F, Güllüce M, Daferera D, Sökmen A, Sökmen M, Polissiou M, Agar G, Özer H (2004) Biological activities of the essential oils and methanol extract of Origanum vulgare ssp. vulgare in the Eastern Anatolia region of Turkey. Food Control 15(7):549–557. doi:10.1016/j.foodcont.2003.08.009

    Article  CAS  Google Scholar 

  • Sakr AA, Ghaly MF, Abdel-Haliem M (2012) The efficacy of specific essential oils on yeasts isolated from the royal tomb paintings at Tanis, Egypt. Int J Conserv Sci 3(2):87–92

    CAS  Google Scholar 

  • Salem MZM, Zidan YE, Mansour MMA, El Hadidi NMN (2016) Antifungal activities of two essential oils used in treatment of three commercial woods deteriorated by five common mold fungi. Int Biodeter Biodegr 106:88–96. doi:10.1016/j.ibiod.2015.10.010

    Article  CAS  Google Scholar 

  • Salomone M, Cuttitta A, Seidita G, Mazzola S, Bertuzzi F, Ricordi C, Ghersi G (2012) Characterization of collagenolytic/proteolytic marine enzymes. Chem Eng Trans 27:1–6. doi:10.3303/CET1227001

    Google Scholar 

  • Sanmartín P, DeAraujo A, Vasanthakumar A (2016) Melding the old with the new: trends in methods used to identify, monitor, and control microorganism on cultural heritage materials. Microb Ecol 71(4):1–17. doi:10.1007/s00248-016-0770-4

    Google Scholar 

  • Sasso S, Scrano L, Ventrella E, Bonomo MG, Crescenzi A, Salzano G, Bufo SA (2013) Natural biocides to prevent the microbial growth on cultural heritage. In: Proc of the Conference Built Heritage 2013 Monitoring Conservation Management, M Boriani (ed), Milano, Italy, pp 1035–1042

    Google Scholar 

  • Savković ZD, Stupar MČ, Grbić LMV, Vukojević JB (2016) Comparison of anti-Aspergillus activity of Origanum vulgare L. essential oil and commercial biocide based on silver ions and hydrogen peroxide. Acta Bot Croat 75(1):121–128. doi:10.1515/botcro-2016-0011

    Google Scholar 

  • Schieweck A, Delius W, Siwinski N, Vogtenrath W, Genning C, Salthammer T (2007) In atmospheric environment, occurrence of organic and inorganic biocides in the museum environment. Proc Indoor Air 2005 – 10th Int Conf Indoor Air Qual Climate (Part I), 41(15):3266–3275

    Google Scholar 

  • Sequeira S, Cabrita EJ, Macedo MF (2012) Antifungals on paper conservation: an overview. Int Biodeter Biodegr 74:67–86. doi:10.1016/j.ibiod.2012.07.011

    Article  CAS  Google Scholar 

  • Silva M, Rosado T, Teixeira D, Candeias A, Caldeira AT (2015) Production of green biocides for cultural heritage. Novel biotechnological solutions. Int J Conserv Sci 6:519–530

    Google Scholar 

  • Smith VJ, Desbois AP, Dyrynda EA (2010) Conventional and unconventional antimicrobials from fish, marine invertebrates and micro-algae. Mar Drugs 8(4):1213–1262. doi:10.3390/md8041213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soković M, Vukojević J, Marin P, Brkić D, Vajs V, Griensven LJLD (2009) Chemical composition of essential oils of Thymus and Mentha species and their antifungal activities. Molecules 14(1):238–249. doi:10.3390/molecules14010238

    Article  PubMed  CAS  Google Scholar 

  • Sondossi M (2009) Biocides (Nonpublic health, Nonagricultural antimicrobials). In: Schaechter M, Lederberg J (eds) Desk Encyclopedia of Microbiology. Academic, Amsterdam/Boston/London

    Google Scholar 

  • Speranza M, Wierzchos J, de los Rios A, Perez-Ortega S, Souza- Egipsy V, Ascaso C (2012) Towards a more realistic picture of in situ biocide actions: combining physiological and microscopy techniques. Sci Total Environ 439:114–122. doi:10.1016/j.scitotenv.2012.09.040

    Article  CAS  PubMed  Google Scholar 

  • Sterflinger K, Pinzari F (2012) The revenge of time: fungal deterioration of cultural heritage with particular reference to books, paper and parchment. Minireview. Environ Microbiol 14(3):559–566. doi:10.1111/j.1462-2920.2011.02584.x

    Article  CAS  PubMed  Google Scholar 

  • Ströfer-Hua E (1993) Chemicals: interaction in art, humans and nature. Restaurator 14(2):57–77. doi:10.1515/rest.1993.14.2.57

    Google Scholar 

  • Stupar M, Grbić MLJ, Džamić A, Unkovia N, Ristić M, Jelikić A, Vukojević J (2014) Antifungal activity of selected essential oils and biocide benzalkonium chloride against the fungi isolated from cultural heritage objects. S Afr J Bot 93:118–124. doi:10.1016/j.sajb.2014.03.016

    Article  CAS  Google Scholar 

  • Tomei F, Baccolo TP, Papaleo B, Biagi M, Signorini S, Persechino B, Rosati MV (1996) Effects of low-dose solvents on blood of art restorers. J Occup Health 38(4):190–195. doi:10.1539/joh.38.190

    Article  CAS  Google Scholar 

  • Trapani MR, Parisi MG, Maisano M, Mauceri A, Cammarata M (2015) Old weapons for new wars: bioactive molecules from Cnidarian internal defense systems. Cent Nerv Syst Agents Med Chem. doi:10.2174/1871524915666150710120650

    Google Scholar 

  • Tretiach M, Crisafulli P, Imai N, Kashiwadani H, Hee Moon K, Wada H, Salvadori O (2007) Efficacy of a biocide tested on selected lichens and its effects on their substrata. Int Biodeter Biodegr 59(1):44–54. doi:10.1016/j.ibiod.2006.06.027

    Article  CAS  Google Scholar 

  • Valgas C, Machado de Souza S, Smânia EFA, Smânia AJ (2007) Screening methods to determine antibacterial activity of natural products. Braz J Microbiol 38:369–380

    Article  Google Scholar 

  • van der Werf ID, Ditaranto N, Picca RA, Sportelli MC, Sabbatini L (2015) Development of a novel conservation treatment of stone monuments with bioactive nanocomposites. Herit Sci 3(29):1–9. doi:10.1186/s40494-015-0060-3

    Google Scholar 

  • Velikova T, Trepova E, Rozen T (2011) The use of biocides for the protection of library documents: before and now. In: Méndez-Vilas A (ed) Science against microbial pathogens: communicating current research and technological advances. Formatex, Badajoz, pp 152–159

    Google Scholar 

  • Vukojević J, Grbić ML (2010) Moulds on paintings in Serbian fine art museums. Afr J Microbiol Res 4(13):1453–1456

    Google Scholar 

  • Walentowska J, Foksowicz-Flaczyk J (2013) Thyme essential oil for antimicrobial protection of natural textiles. Int Biodeter Biodegr 84:407–411. doi:10.1016/j.ibiod.2012.06.028

    Article  CAS  Google Scholar 

  • Walsh Z, Janeček ER, Jones M, Scherman OA (2016) Natural polymers as alternative consolidants for the preservation of waterlogged archaeological wood. Stud Conserv. doi:10.1179/2047058414Y.0000000149

    Google Scholar 

  • Warscheid T (2000) Integrated concepts for the protection of cultural artifacts against biodeterioration. In: Ciferri O, Tiano P, Mastromei G (eds) Of microbes and art, the role of microbial communities in the deterioration and protection of cultural heritage. Kluwer Academic/Plenum Publishers, New York, pp 185–201

    Google Scholar 

  • Warscheid T (2003) The evaluation of biodeterioration processes on cultural objects and approaches for their effective control. In: Koestler RJ (ed) Art, biology, and Conservation: Biodeterioration of Works of Art. Metropolitan Museum of Art, New York, pp 14–27

    Google Scholar 

  • Weinheimer AJ, Spraggins RL (1969) The occurrence of two new prostaglandin derivatives (15-epi-PGA and its acetate, methyl ester) in the Gorgonian Plexaura homomalla chemistry of Coelenterates. XV. Tetrahedron Lett 59:5185–5188

    Article  Google Scholar 

  • Wiegand I, Hilpert K, Hancock REW (2008) Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc 3:163–175. doi:10.1038/nprot.2007.521

    Article  CAS  PubMed  Google Scholar 

  • Williams GP, Babu S, Ravikumar S, Kathiresan K, Prathap SA, Chinnapparaj S, Marian NP, Alikhan SL (2007) Antimicrobial activity of tissue and associated bacteria from benthic sea anemone Stichodactyla haddoni against microbial pathogens. Journal of Environmental Biology 28(4): 789–793.

    Google Scholar 

  • Yang VW, Clausen CA (2007) Antifungal effect of essential oils on southern yellow pine. Int Biodeter Biodegr 59(4):302–306. doi:10.1016/j.ibiod.2006.09.004

    Article  CAS  Google Scholar 

  • Young ME, Alakomi HL, Fortune L, Gorbushina AA, Krumbein WE, Maxwell I, McCullagh C, Robertson P, Saarela M, Valero J, Vendrell M (2008) Development of a biocidal treatment regime to inhibit biological growths on cultural heritage: BIODAM. Environ Geol 56(3):631–641. doi:10.1007/s00254-008-1455-1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanna Barresi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Barresi, G., Cammarata, M., Palla, F. (2017). Biocide. In: Palla, F., Barresi, G. (eds) Biotechnology and Conservation of Cultural Heritage. Springer, Cham. https://doi.org/10.1007/978-3-319-46168-7_3

Download citation

Publish with us

Policies and ethics