Skip to main content

UV-C as an Efficient Means to Combat Biofilm Formation in Cultural Heritage Monument. Biodiversity and Impact on Prehistoric Pigments?

  • Chapter
  • First Online:
10th International Symposium on the Conservation of Monuments in the Mediterranean Basin (MONUBASIN 2017)

Abstract

Caves are considered oligotrophic habitats exhibiting constant temperature and relative humidity throughout the year. While darkness inhibits photosynthetic microorganism growth, introducing artificial lights to promote touristic activity can induce algae and cyanobacteria proliferation. Besides the aesthetic problem, microorganisms are responsible of physical and chemical degradation of limestone wall with possibly a degradation of prehistoric painting of cultural value. In our studies, we identified lampenflora with new-generation sequencing (NGS) in five French show caves and also on a 180, 000 years old contaminated bear bones (Ursus deningeroides). Afterward, we attempted to find an ecological and efficient method to eradicate photosynthetic biofilms. Our previous works showed the good efficiency of UV-C against biofilms. To ensure the safety of UV-C treatment, pigments used for prehistoric parietal painting were strongly irradiated around 4800 kJ m−2. Afterward, we treated all biofilms in La Glacière show cave. Following the treatment, irradiated biofilm color evolution was monitored. Results of sequencing showed that biofilms were mainly composed of bacteria, fungi, cyanobacteria, chlorophyceae, and diatoms. Multicellular mosses were also present in each biofilm. Furthermore, X-ray crystallography, infrared spectroscopy, and colorimetric measurement showed no change in pigment color nor in their chemical structure. Finally, UV-C treatment results showed that biofilms were completely eradicated with no algae proliferation observed after 21 months. Moreover, a complete bleaching is obtained with UV-C, which is not always the case with chemical conventional methods. In conclusion, the use of UV-C could be considered as an environmentally friendly good alternative to chemical products. Moreover, microorganisms are killed by radiation, while no change in pigment color nor in their chemical structure has been observed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aubert M, Brumm A, Ramli M, Sutikna T, Saptomo EW, Hakim B, Morwood MJ, Bergh Van Den GD, Dosseto LK aA (2014) Pleistocene cave art from Sulawesi, Indonesia. Nature 514:223–227. https://doi.org/10.1038/nature13422

    Article  CAS  Google Scholar 

  2. Jaubert J, Verheyden S, Genty D, Soulier M, Cheng H, Blamart D, Burlet C, Camus H, Delaby S, Deldicque D, Edwards RL, Ferrier C (2016) Early Neanderthal constructions deep in Bruniquel Cave in southwestern France. Nature:1–17. https://doi.org/10.1038/nature18291

  3. Cigna A (2016) Tourism and show caves. Z Geomorphol 60. https://doi.org/10.1127/zfg_suppl/2016/00305

  4. Zhang S, Jin Y (1994, 29 Oct–1 Nov) Tourism resources on karst and caves in China. Actas II Congr ISCA, Malaga, 111–119

    Google Scholar 

  5. Cigna AA, Burri E (2000) Development management and ‘Lampenflora’ and economy of show caves. Int J Speleol 29:1–27

    Article  Google Scholar 

  6. Gillieson DS (2011) Management of caves. In: Van Beyen P (ed) Karst management. Springer, New York, pp 141–158

    Chapter  Google Scholar 

  7. Baker A, Genty D (1998) Environmental pressures on conserving cave speleothems: effects of changing surface land use and increased cave tourism. J Environ Manag 53:165–175. https://doi.org/10.1006/jema.1998.0208

    Article  Google Scholar 

  8. Dragovich D, Grose J (1990) Impact of tourists on carbon dioxide levels at Jenolan caves, Australia: an examination of microclimatic constraints on tourist cave Managemenent. Geoforum 21(1):111–120. https://doi.org/10.1016/0016-7185(90)90009-U

    Article  Google Scholar 

  9. Cennamo P, Marzano C, Ciniglia C, Pinto G, Cappelletti P, Caputo P, Studies K (2012) A Survey of the algal flora of anthropogenic caves of Campi Flegrei (Naples, Italy) Archeological District. J Caves Karst Stud 73:243–250. https://doi.org/10.4311/2011JCKS0194

    Article  Google Scholar 

  10. Piano E, Bona F, Falasco E, La Morgia V, Badino G, Isaia M (2015) Environmental drivers of phototrophic biofilms in an Alpine show cave (SW-Italian Alps). Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2015.05.089

  11. Lamprinou V, Danielidis DB, Pantazidou A, Oikonomou A, Economouamilli A (2014) The show cave of Diros vs wild caves of Peloponnese, Greece – distribution patterns of cyanobacteria. 43:335–342. https://doi.org/10.5038/1827-806X.43.3.10

  12. Friedmann I (1955) Studies on cave-algae from Israel I. Geitleria calcarea n. gen. et n. sp. A new atmophytic lime-encrusting blue-green alga. Bot Notiser 108:439–445

    Google Scholar 

  13. Borderie F, Alaoui-Sossé L, Raouf N, Bousta F, Orial G, Riefel D, Alaoui-Sossé B (2011) UV-C irradiation as a tool to eradicate algae in caves. Int Biodeterior Biodegrad 65:579–584. https://doi.org/10.1016/j.ibiod.2011.02.005

    Article  CAS  Google Scholar 

  14. Grobbelaar JU (2000) Lithophytic algae: a major threat to the karst formation of show caves. J Appl Phycol 12:309–315. https://doi.org/10.1023/A:1008172227611

    Article  Google Scholar 

  15. Hoffmann L, Darienko T (2005) Algal biodiversity on sandstone in Luxembourg. Ferrantia 44:99–101

    Google Scholar 

  16. Bruno L, Billi D, Bellezza S, Albertano P (2008) Cytomorphological and genetic characterization of troglobitic Leptolyngbya strains isolated from Roman hypogea. Appl Environ Microbiol 73(3):608–617. Comm. EUR, 305–311. doi:https://doi.org/10.1128/AEM.01183-08

  17. Aley T, Aley C, Rhodes R (1985) Control of exotic plant growth in Carlsbad caverns, New Mexico. Proc 1984 Natl Cave Mgt Symp, Mo Speleol 25(1–4):159–171

    Google Scholar 

  18. Cañaveras JC, Sanchez-Moral S, Soler V, Saiz-Jimenez C (2001) Microorganisms and microbially induced fabrics in cave walls. Geomicrobiol J 18:223–240. https://doi.org/10.1080/01490450152467769

    Article  Google Scholar 

  19. Asencio AD, Aboal M (2001) Biodeterioration of wall paintings in caves of Murcia (SE Spain) by epilithic and chasmoendolithic microalgae. Algol Stud 103:131–142

    Google Scholar 

  20. Mihajlovski A, Seyer A, Benamara D, Bousta H, Martino F, Di P (2014) An overview of techniques for the characterization and quantification of microbial colonization on stone monuments. Ann Microbiol. https://doi.org/10.1007/s13213-014-0956-2

  21. Shields LM, Durell LW (1964) Algae in relation to soil fertility. Bot Rev 30:92–128

    Article  CAS  Google Scholar 

  22. Smith T, Olson R (2007) A taxonomic survey of lamp flora (Algae and Cyanobacteria) in electrically lit passages within Mammoth Cave National Park, Kentucky. Int J Speleol 36:105–114. https://doi.org/10.5038/1827-806X.36.2.6

    Article  Google Scholar 

  23. Aley T (2004) Tourist caves: algae and lampenflora. In: Gunn J (ed) Encyclopedia of Caves and Karst tropical Science. Fitzroy Dearborn, New York, pp 1568–1570

    Google Scholar 

  24. Ruspoli M (1986) Lascaux: Un nouveau regard. Bordas, Paris

    Google Scholar 

  25. Mulec J, Kosi G (2009) Lampenflora algae and methods of growth control. J Cave Karst Stud 71:109–115

    CAS  Google Scholar 

  26. Faimon J, Stelcl J, Kubesová S, Zimák J (2003) Environmentally acceptable effect of hydrogen peroxide on cave “lampflora”, calcite speleothems and limestones. Environ Pollut 122:417–422. https://doi.org/10.1016/S0269-7491(02)00309-3

    Article  CAS  Google Scholar 

  27. Bonneau A, Pearce DG, Pollard AM (2012) A multi-technique characterization and provenance study of the pigments used in San rock art, South Africa. J Archaeol Sci 39:287–294. https://doi.org/10.1016/j.jas.2011.09.011

    Article  CAS  Google Scholar 

  28. Lofrumento C, Ricci M, Bachechi L, De Feo D, Castellucci EM (2012) The first spectroscopic analysis of Ethiopian prehistoric rock painting. J Raman Spectrosc 43:809–816. https://doi.org/10.1002/jrs.3096

    Article  CAS  Google Scholar 

  29. Pfendler S, Karimi B, Maron PA, Ciadamidaro L, Valot B, Bousta F, Alaoui-Sosse L, Alaoui-Sosse B, Aleya L (2017) Biofilm biodiversity in French and Swiss show caves using the metabarcoding approach: first data. Sci Tot Environ. https://doi.org/10.1016/j.scitotenv.2017.10.054

  30. Gibeaux S, Tourron S, Bousta F (2014) Etude des effets du rayonnement UV-C sur la matière picturale dans le cadre d’une application en grotte ornée. Laboratoire de Recherche des Monuments Historiques (LRMH), Rapport 1377A, p 58

    Google Scholar 

  31. Rifkin RF, Dayet L, Queffelec A, Summers B, Lategan M, d’Errico F (2015) Evaluating the Photoprotective effects of ochre on human skin by in vivo SPF assessment: implications for human evolution, adaptation and dispersal. PLoS One 10(9):e0136090. https://doi.org/10.1371/journal.pone.0136090

    Article  CAS  Google Scholar 

  32. Mcbrearty S, Brooks AS (2000) The revolution that wasn’t: a new interpretation of the origin of modern human behavior. J Human Evol 39:453–563. https://doi.org/10.1006/jhev.2000.0435

    Article  CAS  Google Scholar 

  33. Borderie F, Tête N, Cailhol D, Alaoui-Sehmer L, Bousta F, Rieffel D, Aleya L, Alaoui-Sossé B (2014) Factors driving epilithic algal colonization in show caves and new insights into combating biofilm development with UV-C treatments. Sci Total Environ 484:43–52. https://doi.org/10.1016/j.scitotenv.2014.03.043

    Article  CAS  Google Scholar 

  34. Chairat B, Nutthachai P, Varit S (2013) Effect of uv-C treatment on chlorophyll degradation, antioxidant enzyme activities and senescence in Chinese kale (Brassica oleracea var alboglabra). Int Food Res J 20:623–628

    CAS  Google Scholar 

  35. Aiamlaora S, Kaewsuksaengb S, Shigyoa M, Yamauchia N (2010) Impact of UV-B irradiation on chlorophyll degradation and chlorophyll-degrading enzyme activities in stored broccoli (Brassica oleracea L. Italica Group) florets. Food Chem 120:645–651. https://doi.org/10.1016/j.foodchem.2009.10.056

    Article  CAS  Google Scholar 

  36. Pfendler S, Einhorn O, Karimi B, Bousta F, Caihol D, Alaoui-Sossé L, Alaoui-Sossé B, Aleya L (2017) UV-C as an efficient means to combat biofilm formation in show caves: evidence from the La Glacière Cave (France) and laboratory experiments. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-017-0143-7

Download references

Acknowledgment

We are grateful to the “Ministère de la Culture et de la Communication” (France) and the “Laboratoire de Recherche des Monuments Historiques” (LRMH, Paris) for their financial contribution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane Pfendler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pfendler, S., Bousta, F., Alaoui-Sossé, L., Khatyr, A., Aleya, L., Alaoui-Sossé, B. (2018). UV-C as an Efficient Means to Combat Biofilm Formation in Cultural Heritage Monument. Biodiversity and Impact on Prehistoric Pigments?. In: Koui, M., Zezza, F., Kouis, D. (eds) 10th International Symposium on the Conservation of Monuments in the Mediterranean Basin. MONUBASIN 2017. Springer, Cham. https://doi.org/10.1007/978-3-319-78093-1_56

Download citation

Publish with us

Policies and ethics