Skip to main content
Log in

Melding the Old with the New: Trends in Methods Used to Identify, Monitor, and Control Microorganisms on Cultural Heritage Materials

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Microbial activity has an important impact on the maintenance of cultural heritage materials, owing to the key role of microorganisms in many deterioration processes. In order to minimize such deleterious effects, there is a need to fine-tune methods that detect and characterize microorganisms. Trends in microbiology indicate that this need can be met by incorporating modern techniques. All of the methods considered in this review paper are employed in the identification, surveillance, and control of microorganisms, and they have two points in common: They are currently used in microbial ecology (only literature from 2009 to 2015 is included), and they are often applied in the cultural heritage sector. More than 75 peer-reviewed journal articles addressing three different approaches were considered: molecular, sensory and morphological, and biocontrol methods. The goal of this review is to highlight the usefulness of the traditional as well as the modern methods. The general theme in the literature cited suggests using an integrated approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ciferri O (2002) The role of microorganisms in the degradation of cultural heritage. Rev Conserv 3:35–45

    CAS  Google Scholar 

  2. Allsopp D (2011) Worldwide wastage: the economics of biodeterioration. Microbiol Tod 38:150–153

    Google Scholar 

  3. Koestler RJ, Koestler VH, Charola AE, Nieto Fernandez FE (2003) Art, biology and conservation: biodeterioration of works of art. The Metropolitan Museum of Art, New York

    Google Scholar 

  4. Coutinho ML, Miller AZ, Gutierrez-Patricio S, Hernandez-Marine M, Gomez-Bolea A, Rogerio-Candelera MA, Philips AJL, Jurado V, Saiz-Jimenez C, Macedo MF (2013) Microbial communities on deteriorated artistic tiles from Pena National Palace (Sintra, Portugal). Int Biodeter Biodegr 84:322–332

    Article  CAS  Google Scholar 

  5. Pinzari F (2011) Microbial ecology of indoor environments. The ecological and applied aspects of microbial contamination in archives, libraries and conservation environments (Chapter 9). In: Abdul-Wahab Al-Sulaiman SA (ed) Sick building syndrome in public buildings and workplaces. Elsevier, Burlington

    Google Scholar 

  6. Pinzari F, Cialei V, Barbabietola N (2010) Measurement of the microaeroflora deteriorating potentialities in the indoor environments. Preserv Sci 7:29–34

    CAS  Google Scholar 

  7. Konkol NR, McNamara CJ, Hellman E, Mitchell R (2012) Early detection of fungal biomass on library materials. J Cult Herit 13(2):115–119

    Article  Google Scholar 

  8. Vivar I, Borrego S, Ellis G, Moreno DA, García AM (2013) Fungal biodeterioration of color cinematographic films of the cultural heritage of Cuba. Int Biodeter Biodegr 84:372–382

    Article  CAS  Google Scholar 

  9. Kurouski D, Zaleski S, Casadio F, Van Duyne RP, Shah NC (2014) Tip-enhanced Raman spectroscopy (TERS) for in situ identification of indigo and iron gall ink on paper. J Am Chem Soc 136(24):8677–8684

    Article  PubMed  CAS  Google Scholar 

  10. Cámara B, De los Rios A, Urizal M, AlvarezdeBuergo M, Varas MJ, Fort R, Ascaso C (2011) Characterizing the microbial colonization of a Dolostone Quarry: implications for stone biodeterioration and response to biocide treatments. Microb Ecol 62:299–313

    Article  PubMed  CAS  Google Scholar 

  11. Prieto B, Ferrer P, Sanmartín P, Cárdenes V, Silva B (2011) Color characterization of roofing slates from the Iberian Peninsula for restoration purposes. J Cult Herit 12(4):420–430

    Article  Google Scholar 

  12. Sterflinger K (2010) Fungi: their role in deterioration of cultural heritage. Fungal Biol Rev 24:47–55

    Article  Google Scholar 

  13. Otlewska A, Adamiak J, Gutarowska B (2014) Application of molecular techniques for the assessment of microorganism diversity on cultural heritage objects. Acta Biochim Pol 61(2):217–225

    PubMed  Google Scholar 

  14. Principi P, Villa F, Sorlini C, Cappitelli F (2011) Molecular studies of microbial community structure on stained pages of Leonardo da Vinci's Atlantic Codex. Microb Ecol 61(1):214–222

    Article  PubMed  Google Scholar 

  15. Lupan I, Ianc MB, Kelemen BS, Carpa R, Rosca-Casian O, Chiriac MT, Popescu O (2014) New and old microbial communities colonizing a seventeenth-century wooden church. Folia Microbiol (Praha) 59(1):45–51

    Article  CAS  Google Scholar 

  16. Ortiz R, Párraga M, Navarrete J, Carrasco I, de la Vega E, Ortiz M, Herrera P, Jurgens JA, Held BW, Blanchette RA (2014) Investigations of biodeterioration by fungi in historic wooden churches of Chiloé, Chile. Microb Ecol 67(3):568–575

    Article  PubMed  CAS  Google Scholar 

  17. Rajkowska K, Otlewska A, Koziróg A, Piotrowska M, Nowicka-Krawczyk P, Hachułka M, Wolski GJ, Kunicka-Styczyńska A, Gutarowska B, Żydzik-Białek A (2014) Assessment of biological colonization of historic buildings in the former Auschwitz II-Birkenau concentration camp. Ann Microbiol 64(2):799–808

    Article  PubMed  CAS  Google Scholar 

  18. Palla F, Mancuso FP, Billeci N (2013) Multiple approaches to identify bacteria in archaeological waterlogged wood. J Cult Herit 14(Suppl 3):e61–e64

    Article  Google Scholar 

  19. Kusumi A, Li X, Osuga Y, Kawashima A, Gu J-D, Nasu M, Katayama Y (2013) Bacterial communities in pigmented biofilms formed on the sandstone bas-relief walls of the Bayon Temple, Angkor Thom, Cambodia. Microbes Environ 28(4):422–431

    Article  PubMed  PubMed Central  Google Scholar 

  20. Polo A, Gulotta D, Santo N, Di Benedetto C, Fascio U, Toniolo L, Villa F, Cappitelli F (2012) Importance of subaerial biofilms and airborne microflora in the deterioration of stonework: a molecular study. Biofouling 28(10):1093–1106

    Article  PubMed  Google Scholar 

  21. Hu H, Ding S, Katayama Y, Kusumi A, Li SX, de Vries RP, Wang J, X-Z Y, Gu J-D (2013) Occurrence of Aspergillus allahabadii on sandstone at Bayon temple, Angkor Thom, Cambodia. Int Biodeter Biodegr 76:112–117

    Article  CAS  Google Scholar 

  22. Cennamo P, Caputo P, Giorgio A, Moretti A, Pasquino N (2013) Biofilms on tuff stones at historical sites: identification and removal by nonthermal effects of radiofrequencies. Microb Ecol 66:659–668

    Article  PubMed  CAS  Google Scholar 

  23. Pepe O, Sannino L, Palomba S, Anastasio M, Blaiotta G, Villani F, Moschetti G (2010) Heterotrophic microorganisms in deteriorated medieval wall paintings in southern Italian churches. Microbiol Res 165:21–32

    Article  PubMed  CAS  Google Scholar 

  24. Ma Y, Zhang H, Du Y, Tian T, Xiang T, Liu X, Feng H (2015) The community distribution of bacteria and fungi on ancient wall paintings of the Mogao Grottoes. Sci Rep 5:7752

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Vasanthakumar A, DeAraujo A, Mazurek J, Schilling M, Mitchell R (2013) Microbiological survey for analysis of the brown spots on the walls of the tomb of King Tutankhamun. Int Biodeter Biodegr 79:56–63

    Article  CAS  Google Scholar 

  26. Diaz-Herraiz M, Jurado V, Cuezva S, Laiz L, Pallecchi P, Tiano P, Saiz-Jimenez C (2014) Deterioration of an Etruscan tomb by bacteria from the order Rhizobiales. Sci Rep 4:3610

    Article  PubMed  PubMed Central  Google Scholar 

  27. Cappitelli F, Abbruscato P, Foladori P, Zanardini E, Ranalli G, Principi P, Villa F, Polo A, Sorlini C (2009) Detection and elimination of cyanobacteria from frescoes: the case of the St. Brizio Chapel (Orvieto Cathedral, Italy). Microb Ecol 57(4):633–639

    Article  PubMed  CAS  Google Scholar 

  28. Cappitelli F, Pasquariello G, Tarsitani G, Sorlini C (2010) Scripta manent? Assessing microbial risk to paper heritage. Trends Microbiol 18(12):538–542

    Article  PubMed  CAS  Google Scholar 

  29. Bergadi FE, Laachari F, Elabed S, Mohammed IH, Ibnsouda SK (2014) Cellulolytic potential and filter paper activity of fungi isolated from ancients manuscripts from the Medina of Fez. Ann Microbiol 64(2):815–822

    Article  CAS  Google Scholar 

  30. Michaelsen A, Piñar G, Montanari M, Pinzari F (2009) Biodeterioration and restoration of a 16th-century book using a combination of conventional and molecular techniques: a case study. Int Biodeter Biodegr 63(2):161–168

    Article  CAS  Google Scholar 

  31. Michaelsen A, Piñar G, Pinzari F (2010) Molecular and microscopical investigation of the microflora inhabiting a deteriorated Italian manuscript dated from the thirteenth Century. Microb Ecol 60(1):69–80

    Article  PubMed  PubMed Central  Google Scholar 

  32. Piñar G, Sterflinger K, Ettenauer J, Quandt A, Pinzari F (2015) A combined approach to assess the microbial contamination of the Archimedes Palimpsest. Microb Ecol 69(1):118–134

    Article  PubMed  Google Scholar 

  33. Piñar G, Sterflinger K, Pinzari F (2015) Unmasking the measles-like parchment discoloration: molecular and microanalytical approach. Environ Microbiol 17(2):427–443

    Article  PubMed  CAS  Google Scholar 

  34. Montanari M, Melloni V, Pinzari F, Innocenti G (2012) Fungal biodeterioration of historical library materials stored in Compactus movable shelves. Int Biodeterior Biodegrad 75:83–88

    Article  CAS  Google Scholar 

  35. Ettenauer J, Piñar G, Tafer H, Sterflinger K (2014) Quantification of fungal abundance on cultural heritage using real time PCR targeting the β-actin gene. Front Microbiol 5:262

    Article  PubMed  PubMed Central  Google Scholar 

  36. Michaelsen A, Pinzari F, Barbabietola N, Piñar G (2013) Monitoring of the effects of different conservation treatments on paper infecting fungi. Int Biodeterior Biodegrad 84:333–341

    Article  CAS  Google Scholar 

  37. Villa F, Vasanthakumar A, Mitchell R, Cappitelli F (2015) RNA-based molecular survey of biodiversity of limestone tombstone microbiota in response to atmospheric sulphur pollution. Lett Appl Microbiol 60(1):92–102

    Article  PubMed  CAS  Google Scholar 

  38. Krakova L, Chovanova K, Pusˇkarova A, Bucˇkova M, Pangallo D (2012) A novel PCR-based approach for the detection and classification of potential cellulolytic fungal strains isolated from museum items and surrounding indoor environment. Lett Appl Microbiol 54(5):433–440

    Article  PubMed  CAS  Google Scholar 

  39. Krakova L, De Leo F, Bruno L, Pangallo D, Urzì C (2015) Complex bacterial diversity in the white biofilms of St. Callistus Catacombs in Rome evidenced by different investigation strategies. Environ Microbiol (Accepted Article, doi: 10.1111/1462-2920.12626)

  40. Fleming A (1929) On the antibacterial action of cultures of a Penicillium, with special reference to their use in the isolation of B. influenzae. Br J Exp Pathol 10:226–236

    PubMed Central  CAS  Google Scholar 

  41. Pierson LS III, Pierson EA (2010) Metabolism and function of phenazines in bacteria: impacts on the behavior of bacteria in the environment and biotechnological processes. Appl Microbiol Biotechnol 86:1659–1670

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Kirby DP, Buckley M, Promise E, Trauger SA, Holdcraft TR (2013) Identification of collagen-based materials in cultural heritage. Analyst 138(17):4849–4858

    Article  PubMed  CAS  Google Scholar 

  43. Corsaro C, Mallamace D, Lojewska J, Mallamace F, Pietronero L, Missori M (2013) Molecular degradation of ancient documents revealed by 1H HR-MAS NMR spectroscopy. Sci Rep 3:2896

    Article  PubMed  PubMed Central  Google Scholar 

  44. Santos A, Cerrada A, García S, San Andrés M, Abrusci C, Marquina D (2009) Application of molecular techniques to the elucidation of the microbial community structure of antique paintings. Microb Ecol 58(4):692–702

    Article  PubMed  CAS  Google Scholar 

  45. De los Ríos A, Cámara B, García Del Cura MA, Rico VJ, Galván V, Ascaso C (2009) Deteriorating effects of lichen and microbial colonization of carbonate building rocks in the Romanesque churches of Segovia, Spain. Sci Total Environ 407(3):1123–1134

    Article  PubMed  CAS  Google Scholar 

  46. Urzì C, De Leo F, Bruno L, Albertano P (2010) Microbial diversity in paleolithic caves: a study case on the phototrophic biofilms of the Cave of Bats (Zuheros, Spain). Microb Ecol 60(1):116–129

    Article  PubMed  CAS  Google Scholar 

  47. Joseph E, Simon A, Prati S, Wörle M, Job D, Mazzeo R (2011) Development of an analytical procedure for evaluation of the protective behaviour of innovative fungal patinas on archaeological and artistic metal artefacts. Anal Bioanal Chem 399(9):2899–2907

    Article  PubMed  CAS  Google Scholar 

  48. Giacomucci L, Bertoncello R, Salvadori O, Martini I, Favaro M, Villa F, Sorlini C, Cappitelli F (2011) Microbial deterioration of artistic tiles from the façade of the Grande Albergo Ausonia & Hungaria (Venice, Italy). Microb Ecol 62(2):287–298

    Article  PubMed  Google Scholar 

  49. Scrano L, Boccone LF, Bufo SA, Carrieri R, Lahoz E, Crescenzi A (2012) Morphological and molecular characterisation of fungal populations possibly involved in the biological alteration of stones in historical buildings. Commun Agric Appl Biol Sci 77(3):187–195

    PubMed  CAS  Google Scholar 

  50. Singh AP (2012) A review of microbial decay types found in wooden objects of cultural heritage recovered from buried and waterlogged environments. J Cult Herit 13(3 suppl):S16–S20

    Article  Google Scholar 

  51. Rosado T, Gil M, Caldeira AT, Martins MR, Barrocas Dias C, Carvalho L, Mirão J, Estêvão Candeias A (2014) Material characterization and biodegradation assessment of mural Paintings – The Renaissance Frescoes from Santo Aleixo Church, Southern Portugal. Int J Archit Herit 8(6):835–852

    Article  Google Scholar 

  52. Rakotonirainy MS, Dubar P (2013) Application of bioluminescence ATP measurement for evaluation of fungal viability of foxing spots on old documents. Luminescence 28:308–312

    Article  PubMed  CAS  Google Scholar 

  53. De Leo F, Iero A, Zammit G, Urzì C (2012) Chemoorganotrophic bacteria isolated from biodeteriorated surfaces in cave and catacombs. Int J Speleol 41:125–136

    Article  Google Scholar 

  54. Hsieh P, Pedersen JZ, Albertano P (2013) Generation of reactive oxygen species upon red light exposure of cyanobacteria from Roman hypogea. Int Biodeter Biodegr 84:258–265

    Article  CAS  Google Scholar 

  55. Hsieh P, Pedersen JZ, Bruno L (2014) Photoinhibition of cyanobacteria and its application in cultural heritage conservation. Photochem Photobiol 90:533–543

    Article  PubMed  CAS  Google Scholar 

  56. Troiano F, Polo A, Villa F, Cappitelli F (2014) Assessing the microbiological risk to stored sixteenth century parchment manuscripts: a holistic approach based on molecular and environmental studies. Biofouling 30(3):299–311

    Article  PubMed  CAS  Google Scholar 

  57. Konkol NR, McNamara CJ, Mitchell R (2010) Fluorometric detection and estimation of fungal biomass on cultural heritage materials. J Microbiol Meth 80(2):178–182

    Article  CAS  Google Scholar 

  58. Konkol NR, Vasanthakumar A, DeAraujo A, Mitchell R (2013) A non-fluidic, fluorometric assay for the detection of fungi on cultural heritage materials. Ann Microbiol 63(3):965–970

    Article  CAS  Google Scholar 

  59. Sanmartín P, Chorro E, Vázquez-Nion D, Martínez-Verdú FM, Prieto B (2014) Conversion of a digital camera into a non-contact colorimeter for use in stone cultural heritage: the application case to Spanish granites. Measurement 56:194–202

    Article  Google Scholar 

  60. Rogerio-Candelera MA, Jurado V, Laiz L, Saiz-Jimenez C (2011) Laboratory and in situ assays of digital image analysis based protocols for biodeteriorated rock and mural paintings recording. J Archaeol Sci 38:2571–2578

    Article  Google Scholar 

  61. CIE Publication 15-2 (1986) Colorimetry. CIE Central Bureau, Vienna

    Google Scholar 

  62. Miller AZ, Rogerio-Candelera MA, Dionísio A, Macedo MF, Saiz-Jimenez C (2013) Microalgae as biodeteriogens of stone cultural heritage: qualitative and quantitative research by non-contact techniques (Book Chapter). Microalgae: Biotechnology, Microbiology and Energy, 345-358

  63. Gazzano C, Favero-Longo SE, Matteucci E, Piervittori R (2009) Image analysis for measuring lichen colonization on and within stonework. Lichenologist 41(3):299–313

    Article  Google Scholar 

  64. CATS— Cyanobacteria attack rocks, contract EVK4-CT2000-00028; by the Italian Ministry of University and Research, project PRIN 2001, 2003; and by the Italian Ministry of Foreign Affairs (Direzione Generale per la Promozione e Cooperazione Culturale)

  65. Polo A, Cappitelli F, Brusetti L, Principi P, Villa F, Giacomucci L, Ranalli G, Sorlini C (2010) Feasibility of removing surface deposits on stone using biological and chemical remediation methods. Environ Microbiol 60:1–14

    CAS  Google Scholar 

  66. Bosch-Roig P, Ranalli G (2014) The safety of biocleaning technologies for cultural heritage. Front Microbiol 5(155):1–3

    Google Scholar 

  67. Bosch-Roig P, Montes-Estellés RM, Regidor-Ros JL, Roig-Picazo P, Ranalli G (2012) New frontiers in the microbial bio-cleaning of artworks. Picturer Restorer 41:37–41

    Google Scholar 

  68. May E, Webster AM, Inkpen R, Zamarreño D, Kuever J, Rudolph C, Warscheid T, Sorlini C, Cappitelli F, Zanardini E, Ranalli G, Krage L, Vgenopoulos A, Katsinis D, Mello E, Malagodi M (2008) The BIOBRUSH project for bioremediation of Heritage stone, in Heritage Microbiology and Science. In: May E, Jones M, Mitchell J (eds) Microbes, monuments and maritime materials. RSC Publishing, Cambridge, pp 76–93

    Google Scholar 

  69. Sanmartín P, DeAraujo A, Vasanthakumar A, Mitchell R (2015) Feasibility study involving the search for natural strains of microorganisms capable of degrading graffiti from heritage materials. Int Biodeterior Biodegrad 103:186–190

    Article  CAS  Google Scholar 

  70. Valentini F, Diamanti A, Palleschi G (2010) New bio-cleaning strategies on porous building materials affected by biodeterioration event. Appl Surf Sci 256:6550–6563

    Article  CAS  Google Scholar 

  71. Alfano G, Lustrato G, Belli C, Zanardini E, Cappitelli F, Mello E, Sorlini C, Ranalli G (2011) The bioremoval of nitrate and sulfate alterations on artistic stonework: The case-study of Matera Cathedral after six years from the treatment. Int Biodeterior Biodegrad 65(7):1004–1011

    Article  CAS  Google Scholar 

  72. Bosch-Roig P, Regidor-Ros JL, Soriano-Sancho P, Domenech-Carbo MT, Montes-Estelles RM (2010) Ensayos de biolimpieza con bacterias en pinturas murales. Arche 4-5:115–124, In Spanish

    Google Scholar 

  73. Gioventu E, Lorenzi P, Villa F, Sorlini C, Rizzi M, Cagnini A, Griffo A, Cappitelli F (2011) Comparing the bioremoval of black crusts on clorored artistic lithotypes of the Cathedral of Florence with chemical and laser treatment. Int Biodeterior Biodegrad 65:832–839

    Article  CAS  Google Scholar 

  74. Lustrato G, Alfano G, Andreotti A, Colombini MP, Ranalli G (2012) Fast biocleaning of mediaeval frescoes using viable bacterial cells. Int Biodeterior Biodegrad 69:51–61

    Article  CAS  Google Scholar 

  75. Troiano F, Gulotta D, Balloi A, Polo A, Toniolo L, Lombardi E, Daffonchio D, Sorlini C, Cappitelli F (2013) Successful combination of chemical and biological treatments for the cleaning of stone artworks. Int Biodeter Biodegr 85:294–304

    Article  CAS  Google Scholar 

  76. Mazzoni M, Alisi C, Tasso F, Cecchini A, Marconi P, Sprocati AR (2014) Laponite micro-packs for the selective cleaning of multiple coherent deposits on wall paintings: The case study of Casina Farnese on the Palatine Hill (Rome-Italy). Int Biodeterior Biodegrad 94:1–11

    Article  CAS  Google Scholar 

  77. Scheerer S, Ortega-Morales O, Gaylarde C (2009) Microbial-deterioration of stone monuments—an updated overview. Adv Appl Microbiol 66:97–139

    Article  PubMed  CAS  Google Scholar 

  78. Villa F, Cappitelli F (2013) Plant-derived bioactive compounds at sub-lethal concentrations: towards smart biocide-free antibiofilm strategies. Phytochem Rev 12(1):245–254

    Article  CAS  Google Scholar 

  79. Borrego S, Valdés O, Vivar I, Lavin P, Guiamet P, Battistoni P, Gómez de Saravia S Borges P (2012) Essential oils of plants as biocides against microorganisms isolated from Cuban and Argentine Documentary Heritage. ISRN Microbiol 1-7

  80. Sasso S, Scrano L, Ventrella E, Bonomo MG, Crescenzi A, Salzano G, Bufo SA (2013) Natural biocides to prevent the microbial growth on cultural heritage. In: Boriani M, Gabaglio R, Gulotta D (eds) Proceedings of the Conference Built Heritage 2013-Monitoring Conservation and Management. Politecnico di Milano, Milan, pp 1035–1042

    Google Scholar 

  81. Stupar M, Grbić ML, Džamić A, Unković N, Ristić M, Jelikić A, Vukojević J (2014) Antifungal activity of selected essential oils and biocide benzalkonium chloride against the fungi isolated from cultural heritage objects. South African J Botany 93:118–124

    Article  CAS  Google Scholar 

  82. Gazzano C, Favero-Longo SE, Iacomussi P, Piervittori R (2013) Biocidal effect of lichen secondary metabolites against rock-dwelling microcolonial fungi, cyanobacteria and green algae. Int Biodeterior Biodegrad 84:300–306

    Article  CAS  Google Scholar 

  83. Troiano F, Vicini S, Gioventù E, Lorenzi PF, Improta CM, Cappitelli F (2014) A methodology to select bacteria able to remove synthetic polymers. Polym Dedrad Stabil 107:321–327

    Article  CAS  Google Scholar 

  84. Cleeland LM, Reichard MV, Tito RY, Reinhard KJ, Lewis CM Jr (2013) Clarifying prehistoric parasitism from a complementary morphological and molecular approach. J Archaeol Sci 40:3060–3066

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Herrera LK, Videla HA (2009) Surface analysis and materials characterization for the study of biodeterioration and weathering effects on cultural property. Int Biodeter Biodegr 63(7):813–822

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Patricia Sanmartín, Alice DeAraujo, and Archana Vasanthakumar are deeply indebted to Professor Ralph Mitchell for his invaluable guidance and support. Patricia Sanmartín is financially supported by a postdoctoral contract within the framework of the 2011–2015 Galician Plan for Research, Innovation and Growth (Plan I2C) for 2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Archana Vasanthakumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanmartín, P., DeAraujo, A. & Vasanthakumar, A. Melding the Old with the New: Trends in Methods Used to Identify, Monitor, and Control Microorganisms on Cultural Heritage Materials. Microb Ecol 76, 64–80 (2018). https://doi.org/10.1007/s00248-016-0770-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-016-0770-4

Keywords

Navigation