Skip to main content
Log in

Surface Modification Strategies for Biomedical Applications: Enhancing Cell–Biomaterial Interfaces and Biochip Performances

  • Review Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

Surface modification techniques are crucial in biomedical applications as they determine the direct response to the biological environment against the interfacing materials. Physical and chemical modification techniques have been extensively studied, with the latter being more commonly used due to the need for molecularly thin layers. Achieving uniform and conformal surface coverage on target geometries is critical to optimizing sensor and biomedical applications. However, achieving molecularly thin layers is practically challenging, and thick layers can alter the original properties of the bulk material. Furthermore, delamination of coated layers in humid or aqueous environments is also a concern, which can be prevented by covalent bonding of the functional groups on the substrate or incorporating appropriate functional groups or charges for solid adhesion. In this review, we provide an overview of the consolidated techniques for surface modification of materials for biomedical applications, including protein immobilization, chemical grafting, thin film coating, and plasma treatments. It also discusses the most frequently used surface modification techniques and their applications in the field. Overall, optimizing surface engineering for each case is crucial, even if the method is the same, to achieve a uniform and conformal surface coverage on target geometries for various biomedical devices, sensors, and implants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Copyright 2019 American Chemical Society. (d) Characterization of hydrogel-coated surfaces, such as wettability, fibroblast adhesion, and surface morphology, in order from left to right [98]

Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fabbri, P., Messori, M.: 5 - surface modification of polymers: chemical, physical, and biological routes. In: Jasso-Gastinel, C.F., Kenny, J.M. (eds.) Modification of Polymer Properties, pp. 109–130. William Andrew Publishing (2017). https://doi.org/10.1016/B978-0-323-44353-1.00005-1

    Chapter  Google Scholar 

  2. Bednar, R.M., Golbek, T.W., Kean, K.M., Brown, W.J., Jana, S., Baio, J.E., Karplus, P.A., Mehl, R.A.: Immobilization of proteins with controlled load and orientation. ACS Appl. Mater. Interfaces 11(40), 36391–36398 (2019). https://doi.org/10.1021/acsami.9b12746

    Article  CAS  PubMed  Google Scholar 

  3. Wang, X.L., Franking, C.E.R., Hamers, J.R.: Surface chemistry for stable and smart molecular and biomolecular interfaces via photochemical grafting of alkenes. Accounts Chem. Res. 43(9), 1205–1215 (2010)

    Article  CAS  Google Scholar 

  4. Wang, W., Mattoussi, H.: Engineering the bio-nano interface using a multifunctional coordinating polymer coating. Acc. Chem. Res. 53(6), 1124–1138 (2020). https://doi.org/10.1021/acs.accounts.9b00641

    Article  CAS  PubMed  Google Scholar 

  5. Lee, D., Park, K., Seo, J.: Recent advances in anti-inflammatory strategies for implantable biosensors and medical implants. BioChip J. 14(1), 48–62 (2020). https://doi.org/10.1007/s13206-020-4105-7

    Article  CAS  Google Scholar 

  6. Yoshida, S., Hagiwara, K., Hasebe, T., Hotta, A.: Surface modification of polymers by plasma treatments for the enhancement of biocompatibility and controlled drug release. Surf. Coat. Technol. 233, 99–107 (2013). https://doi.org/10.1016/j.surfcoat.2013.02.042

    Article  CAS  Google Scholar 

  7. Jacobs, T., Morent, R., De Geyter, N., Dubruel, P., Leys, C.: Plasma surface modification of biomedical polymers: influence on cell-material interaction. Plasma Chem. Plasma Process. 32(5), 1039–1073 (2012). https://doi.org/10.1007/s11090-012-9394-8

    Article  CAS  Google Scholar 

  8. Liu, Z., Liu, X., Ramakrishna, S.: Surface engineering of biomaterials in orthopedic and dental implants: strategies to improve osteointegration, bacteriostatic and bactericidal activities. Biotechnol. J. 16(7), e2000116 (2021). https://doi.org/10.1002/biot.202000116

    Article  CAS  PubMed  Google Scholar 

  9. Chung, Y.-H., Yoo, S.-Y., Yoon, J., Min, J., Choi, J.-W.: Multi-electrochemical signal generation using metalloprotein based on selective surface modification. BioChip J. 11(4), 322–328 (2017). https://doi.org/10.1007/s13206-017-1409-3

    Article  CAS  Google Scholar 

  10. Bae, J., Kim, M.-H., Han, S., Park, S.: Development of tumor-vasculature interaction on chip mimicking vessel co-option of glioblastoma. BioChip J. 17(1), 77–84 (2023). https://doi.org/10.1007/s13206-022-00090-z

    Article  CAS  Google Scholar 

  11. Held, P.A., Fuchs, H., Studer, A.: Covalent-bond formation via on-surface chemistry. Chem.-Eur. J. 23(25), 5874–5892 (2017). https://doi.org/10.1002/chem.201604047

    Article  CAS  PubMed  Google Scholar 

  12. Benko, A., Duch, J., Gajewska, M., Marzec, M., Bernasik, A., Nocun, M., Piskorz, W., Kotarba, A.: Covalently bonded surface functional groups on carbon nanotubes: from molecular modeling to practical applications. Nanoscale 13(22), 10152–10166 (2021). https://doi.org/10.1039/d0nr09057c

    Article  CAS  PubMed  Google Scholar 

  13. Tang, H., Sun, J., Shu, X., Zhao, Y., Nie, J., Zhu, X.: Fabrication of a Surface adhesion layer for hydrogel sensors via photografting. ACS Appl. Polym. Mater. 2(9), 4140–4148 (2020). https://doi.org/10.1021/acsapm.0c00779

    Article  CAS  Google Scholar 

  14. Pan, M., Nguyen, K.-C.T., Yang, W., Liu, X., Chen, X.-Z., Major, P.W., Le, L.H., Zeng, H.: Soft armour-like layer-protected hydrogels for wet tissue adhesion and biological imaging. Chem. Eng. J. (2022). https://doi.org/10.1016/j.cej.2021.134418

    Article  Google Scholar 

  15. Yamazaki, T., Tenjimbayashi, M., Manabe, K., Moriya, T., Nakamura, H., Nakamura, T., Matsubayashi, T., Tsuge, Y., Shiratori, S.: Antifreeze liquid-infused surface with high transparency, low ice adhesion strength, and antifrosting properties fabricated through a spray layer-by-layer method. Ind. Eng. Chem. Res. 58(6), 2225–2234 (2019). https://doi.org/10.1021/acs.iecr.8b05927

    Article  CAS  Google Scholar 

  16. Zhou, J., Ellis, A.V., Voelcker, N.H.: Recent developments in PDMS surface modification for microfluidic devices. Electrophoresis 31(1), 2–16 (2010). https://doi.org/10.1002/elps.200900475

    Article  CAS  PubMed  Google Scholar 

  17. Slaughter, G., Stevens, B.: A cost-effective two-step method for enhancing the hydrophilicity of PDMS surfaces. BioChip J. 8(1), 28–34 (2014). https://doi.org/10.1007/s13206-014-8105-3

    Article  CAS  Google Scholar 

  18. Al Qahtani, M.S., Wu, Y., Spintzyk, S., Krieg, P., Killinger, A., Schweizer, E., Stephan, I., Scheideler, L., Geis-Gerstorfer, J., Rupp, F.: UV-A and UV-C light induced hydrophilization of dental implants. Dent. Mater. 31(8), e157-167 (2015). https://doi.org/10.1016/j.dental.2015.04.011

    Article  CAS  PubMed  Google Scholar 

  19. Moyano, M.A., Martín-Martínez, J.M.: Surface treatment with UV-ozone to improve adhesion of vulcanized rubber formulated with an excess of processing oil. Int. J. Adhes. Adhes. 55, 106–113 (2014). https://doi.org/10.1016/j.ijadhadh.2014.07.018

    Article  CAS  Google Scholar 

  20. Cheneler, D., Bowen, J.: Degradation of polymer films. Soft Matter 9(2), 344–358 (2013). https://doi.org/10.1039/c2sm26502h

    Article  CAS  Google Scholar 

  21. Guiseppi-Elie, A., Rahman, A.R.A., Shukla, N.K.: SAM-modified microdisc electrode arrays (MDEAs) with functionalized carbon nanotubes. Electrochim. Acta 55(14), 4247–4255 (2010). https://doi.org/10.1016/j.electacta.2008.12.043

    Article  CAS  Google Scholar 

  22. Miodek, A., Regan, E.M., Bhalla, N., Hopkins, N.A., Goodchild, S.A., Estrela, P.: Optimisation and characterisation of anti-fouling ternary SAM layers for impedance-based aptasensors. Sensors 15(10), 25015–25032 (2015). https://doi.org/10.3390/s151025015

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zhou, X., Zheng, B.: Surface modification for improving immunoassay sensitivity. Lab Chip (2023). https://doi.org/10.1039/d2lc00811d

    Article  PubMed  Google Scholar 

  24. Koo, K.M., Sina, A.A.I., Carrascosa, L.G., Shiddiky, M.J.A., Trau, M.: DNA–bare gold affinity interactions: mechanism and applications in biosensing. Anal. Methods 7(17), 7042–7054 (2015). https://doi.org/10.1039/c5ay01479d

    Article  CAS  Google Scholar 

  25. Schreiner, S.M., Shudy, D.F., Hatch, A.L., Opdahl, A., Witman, L.J., Petrovykh, D.Y.: Controlled and efficient hybridization achieved with DNA probes immobilized solely through preferential DNA-substrate interactions. Anal. Chem. 82(7), 2803–2810 (2010). https://doi.org/10.1021/ac902765g

    Article  CAS  PubMed  Google Scholar 

  26. Richardson, J.J., Bjornmalm, M., Caruso, F.: Multilayer assembly. Technology-driven layer-by-layer assembly of nanofilms. Science 348(6233), aaa2491 (2015). https://doi.org/10.1126/science.aaa2491

    Article  CAS  PubMed  Google Scholar 

  27. Zhao, S., Caruso, F., Dahne, L., Decher, G., De Geest, B.G., Fan, J., Feliu, N., Gogotsi, Y., Hammond, P.T., Hersam, M.C., Khademhosseini, A., Kotov, N., Leporatti, S., Li, Y., Lisdat, F., Liz-Marzan, L.M., Moya, S., Mulvaney, P., Rogach, A.L., Roy, S., Shchukin, D.G., Skirtach, A.G., Stevens, M.M., Sukhorukov, G.B., Weiss, P.S., Yue, Z., Zhu, D., Parak, W.J.: The future of layer-by-layer assembly: a tribute to ACS nano associate editor Helmuth Mohwald. ACS Nano 13(6), 6151–6169 (2019). https://doi.org/10.1021/acsnano.9b03326

    Article  CAS  PubMed  Google Scholar 

  28. Wågberg, L., Erlandsson, J.: The use of layer-by-layer self-assembly and nanocellulose to prepare advanced functional materials. Adv. Mater. 33(28), 2001474 (2021). https://doi.org/10.1002/adma.202001474

    Article  CAS  Google Scholar 

  29. Zhang, Z., Zeng, J., Groll, J., Matsusaki, M.: Layer-by-layer assembly methods and their biomedical applications. Biomater. Sci. 10(15), 4077–4094 (2022). https://doi.org/10.1039/D2BM00497F

    Article  CAS  PubMed  Google Scholar 

  30. Zheng, S., Li, J.: Inorganic–organic sol gel hybrid coatings for corrosion protection of metals. J. Sol-Gel Sci. Technol. 54(2), 174–187 (2010). https://doi.org/10.1007/s10971-010-2173-1

    Article  CAS  Google Scholar 

  31. Ma, S., Zhang, X., Yu, B., Zhou, F.: Brushing up functional materials. NPG Asia Mater. 11, 1 (2019). https://doi.org/10.1038/s41427-019-0121-2

    Article  Google Scholar 

  32. Chen, N., Kim do, H., Kovacik, P., Sojoudi, H., Wang, M., Gleason, K.K.: Polymer thin films and surface modification by chemical vapor deposition: recent progress. Annu. Rev. Chem. Biomol. Eng. 7, 373–393 (2016). https://doi.org/10.1146/annurev-chembioeng-080615-033524

    Article  CAS  PubMed  Google Scholar 

  33. Khlyustova, A., Cheng, Y., Yang, R.: Vapor-deposited functional polymer thin films in biological applications. J. Mat. Chem. B 8(31), 6588–6609 (2020). https://doi.org/10.1039/d0tb00681e

    Article  CAS  Google Scholar 

  34. Aladese, A.D., Jeong, H.-H.: Recent developments in 3D printing of droplet-based microfluidics. BioChip J. 15(4), 313–333 (2021). https://doi.org/10.1007/s13206-021-00032-1

    Article  CAS  Google Scholar 

  35. Jung, B.-J., Jang, H., Lee, G.-Y., Kim, J., Song, Z., Pyun, J.-C., Lee, W.: Surface functionalization and bonding of chemically inert parylene microfluidics using parylene-A adhesive layer. BioChip J. 16(2), 168–174 (2022). https://doi.org/10.1007/s13206-022-00050-7

    Article  CAS  Google Scholar 

  36. Barry, J.J.A., Howard, D., Shakesheff, K.M., Howdle, S.M., Alexander, M.R.: Using a core–sheath distribution of surface chemistry through 3D tissue engineering scaffolds to control cell ingress. Adv. Mater. 18(11), 1406–1410 (2006). https://doi.org/10.1002/adma.200502719

    Article  CAS  Google Scholar 

  37. Armenise, V., Gristina, R., Favia, P., Cosmai, S., Fracassi, F., Sardella, E.: Plasma-assisted deposition of magnesium-containing coatings on porous scaffolds for bone tissue engineering. Coatings 10, 4 (2020). https://doi.org/10.3390/coatings10040356

    Article  CAS  Google Scholar 

  38. Tang, L., Wu, Y., Timmons, R.B.: Fibrinogen adsorption and host tissue responses to plasma functionalized surfaces. J. Biomed. Mater. Res. 42(1), 156–163 (1998). https://doi.org/10.1002/(sici)1097-4636(199810)42:1%3c156::Aid-jbm19%3e3.0.Co;2-j

    Article  CAS  PubMed  Google Scholar 

  39. Yu, S.J., Pak, K., Kwak, M.J., Joo, M., Kim, B.J., Oh, M.S., Baek, J., Park, H., Choi, G., Kim, D.H., Choi, J., Choi, Y., Shin, J., Moon, H., Lee, E., Im, S.G.: Initiated chemical vapor deposition: A versatile tool for various device applications. Adv. Eng. Mater. 20, 3 (2018). https://doi.org/10.1002/adem.201700622

    Article  CAS  Google Scholar 

  40. Huyen, L.T.N., Hong, S.J., Trung, T.Q., Meeseepong, M., Kim, A.R., Lee, N.-E.: Flexible capillary microfluidic devices based on surface-energy modified polydimethylsiloxane and polymethylmethacrylate with room-temperature chemical bonding. BioChip J. (2023). https://doi.org/10.1007/s13206-023-00096-1

    Article  Google Scholar 

  41. Tan, S.H., Nguyen, N.T., Chua, Y.C., Kang, T.G.: Oxygen plasma treatment for reducing hydrophobicity of a sealed polydimethylsiloxane microchannel. Biomicrofluidics 4(3), 32204 (2010). https://doi.org/10.1063/1.3466882

    Article  CAS  PubMed  Google Scholar 

  42. Siddique, A., Meckel, T., Stark, R.W., Narayan, S.: Improved cell adhesion under shear stress in PDMS microfluidic devices. Colloid Surf. B-Biointerfaces 150, 456–464 (2017). https://doi.org/10.1016/j.colsurfb.2016.11.011

    Article  CAS  Google Scholar 

  43. Tu, Q., Wang, J.-C., Zhang, Y., Liu, R., Liu, W., Ren, L., Shen, S., Xu, J., Zhao, L., Wang, J.: Surface modification of poly(dimethylsiloxane) and its applications in microfluidics-based biological analysis. Rev. Anal. Chem. 31, 3–4 (2012). https://doi.org/10.1515/revac-2012-0016

    Article  CAS  Google Scholar 

  44. Roh, D., Choi, W., Kim, J., Yu, H.-Y., Choi, N., Cho, I.-J.: Fabrication of multi-layered macroscopic hydrogel scaffold composed of multiple components by precise control of UV energy. BioChip J. 12(4), 280–286 (2018). https://doi.org/10.1007/s13206-018-2403-0

    Article  CAS  Google Scholar 

  45. Trantidou, T., Elani, Y., Parsons, E., Ces, O.: Hydrophilic surface modification of PDMS for droplet microfluidics using a simple, quick, and robust method via PVA deposition. Microsyst. Nanoeng. 3(1), 16091 (2017). https://doi.org/10.1038/micronano.2016.91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hu, J., Li, J., Jiang, J., Wang, L., Roth, J., McGuinness, K.N., Baum, J., Dai, W., Sun, Y., Nanda, V., Xu, F.: Design of synthetic collagens that assemble into supramolecular banded fibers as a functional biomaterial testbed. Nat. Commun. 13(1), 6761 (2022). https://doi.org/10.1038/s41467-022-34127-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hasan, A., Saxena, V., Pandey, L.M.: Surface Functionalization of Ti6Al4V via self-assembled monolayers for improved protein adsorption and fibroblast adhesion. Langmuir 34(11), 3494–3506 (2018). https://doi.org/10.1021/acs.langmuir.7b03152

    Article  CAS  PubMed  Google Scholar 

  48. Bilem, I., Plawinski, L., Chevallier, P., Ayela, C., Sone, E.D., Laroche, G., Durrieu, M.C.: The spatial patterning of RGD and BMP-2 mimetic peptides at the subcellular scale modulates human mesenchymal stem cells osteogenesis. J. Biomed. Mater. Res. Part A 106(4), 959–970 (2018). https://doi.org/10.1002/jbm.a.36296

    Article  CAS  Google Scholar 

  49. Benetti, E.M., Spencer, N.D.: Using polymers to impart lubricity and biopassivity to surfaces: are these properties linked? Helv. Chim. Acta 102, 5 (2019). https://doi.org/10.1002/hlca.201900071

    Article  CAS  Google Scholar 

  50. Kweon, S.Y., Park, J.P., Park, C.Y., Park, T.J.: Graphene oxide-mediated fluorometric aptasensor for okadaic acid detection. BioChip J. 16(2), 207–213 (2022). https://doi.org/10.1007/s13206-022-00056-1

    Article  CAS  Google Scholar 

  51. Castiello, F.R., Tabrizian, M.: Multiplex surface plasmon resonance imaging-based biosensor for human pancreatic islets hormones quantification. Anal. Chem. 90(5), 3132–3139 (2018). https://doi.org/10.1021/acs.analchem.7b04288

    Article  CAS  PubMed  Google Scholar 

  52. Nowinski, A.K., Sun, F., White, A.D., Keefe, A.J., Jiang, S.: Sequence, structure, and function of peptide self-assembled monolayers. J. Am. Chem. Soc. 134(13), 6000–6005 (2012). https://doi.org/10.1021/ja3006868

    Article  CAS  PubMed  Google Scholar 

  53. Aghajani, M., Esmaeili, F.: Anti-biofouling assembly strategies for protein & cell repellent surfaces: a mini-review. J. Biomater. Sci.-Polym. Ed. 32(13), 1770–1789 (2021). https://doi.org/10.1080/09205063.2021.1932357

    Article  CAS  PubMed  Google Scholar 

  54. Qiao, Z., Yao, Y., Su, Y., Song, S., Yin, M., Luo, J.: Layer-by-layer assembled multilayer films with multiple antibacterial and pH-induced self-cleaning activities based on polyurethane micelles. ACS Appl. Bio Mater. 2(10), 4583–4593 (2019). https://doi.org/10.1021/acsabm.9b00678

    Article  CAS  PubMed  Google Scholar 

  55. Yu, Y., Cirelli, M., Li, P., Ding, Z., Yin, Y., Yuan, Y., de Beer, S., Vancso, G.J., Zhang, S.: Enhanced stability of poly(3-sulfopropyl methacrylate potassium) brushes coated on artificial implants in combatting bacterial infections. Ind. Eng. Chem. Res. 58(47), 21459–21465 (2019). https://doi.org/10.1021/acs.iecr.9b03980

    Article  CAS  Google Scholar 

  56. Heggestad, J., Kinnamon, D., Olson, L., Liu, J., Kelly, G., Wall, S., Oshabaheebwa, S., Quinn, Z., Fontes, C., Joh, D., Hucknall, D., Pieper, C., Anderson, J., Naqvi, I., Chen, L., Oguin, T., III., Nair, S., Sullenger, B., Woods, C., Burke, T., Sempowski, G., Kraft, B., Chilkoti, A.: Multiplexed, quantitative serological profiling of COVID-19 from blood by a point-of-care test. Sci. Adv. 7(26), eabg4901 (2021). https://doi.org/10.1126/sciadv.abg4901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Heggestad, J., Britton, R., Kinnamon, D., Wall, S., Joh, D., Hucknall, A., Olson, L., Anderson, J., Mazur, A., Wolfe, C., Oguin, T., III., Sullenger, B., Burke, T., Kraft, B., Sempowski, G., Woods, C., Chilkoti, A.: Rapid test to assess the escape of SARS-CoV-2 variants of concern. Sci. Adv. 7(49), eabl7682 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  58. Hu, W., Liu, Y., Chen, T., Liu, Y., Li, C.M.: Hybrid ZnO nanorod-polymer brush hierarchically nanostructured substrate for sensitive antibody microarrays. Adv. Mater. 27(1), 181–185 (2015). https://doi.org/10.1002/adma.201403712

    Article  CAS  PubMed  Google Scholar 

  59. Ryu, S., Yoo, J., Jang, Y., Han, J., Yu, S.J., Park, J., Jung, S.Y., Ahn, K.H., Im, S.G., Char, K., Kim, B.S.: Nanothin coculture membranes with tunable pore architecture and thermoresponsive functionality for transfer-printable stem cell-derived cardiac Sheets. ACS Nano 9(10), 10186–10202 (2015). https://doi.org/10.1021/acsnano.5b03823

    Article  CAS  PubMed  Google Scholar 

  60. Baek, J., Cho, Y., Park, H.J., Choi, G., Lee, J.S., Lee, M., Yu, S.J., Cho, S.W., Lee, E., Im, S.G.: A surface-tailoring method for rapid non-thermosensitive cell-sheet engineering via functional polymer coatings. Adv. Mater. 32(16), e1907225 (2020). https://doi.org/10.1002/adma.201907225

    Article  CAS  PubMed  Google Scholar 

  61. Chen, Y., Shayan, M., Yeo, W.-H., Chun, Y.: Assessment of endothelial cell growth behavior in thin film nitinol. BioChip J. 11(1), 39–45 (2017). https://doi.org/10.1007/s13206-016-1106-7

    Article  CAS  Google Scholar 

  62. Andolfi, A., Jang, H., Martinoia, S., Nam, Y.: Thermoplasmonic scaffold design for the modulation of neural activity in three-dimensional neuronal cultures. BioChip J. 16(4), 451–462 (2022). https://doi.org/10.1007/s13206-022-00082-z

    Article  CAS  Google Scholar 

  63. Kim, J., Kim, S., Uddin, S., Lee, S.S., Park, S.: Microfabricated stretching devices for studying the effects of tensile stress on cells and tissues. BioChip J. 16(4), 366–375 (2022). https://doi.org/10.1007/s13206-022-00073-0

    Article  CAS  Google Scholar 

  64. Nguyen, J.V.L., Ghafar-Zadeh, E.: Biointerface materials for cellular adhesion: Recent progress and future prospects. Actuators 9, 4 (2020). https://doi.org/10.3390/act9040137

    Article  Google Scholar 

  65. Zhang, X., van Rijt, S.: 2D biointerfaces to study stem cell-ligand interactions. Acta Biomater. 131, 80–96 (2021). https://doi.org/10.1016/j.actbio.2021.06.044

    Article  PubMed  Google Scholar 

  66. Kumar, V.B., Tiwari, O.S., Finkelstein-Zuta, G., Rencus-Lazar, S., Gazit, E.: Design of functional RGD peptide-based biomaterials for tissue engineering. Pharmaceutics 15, 2 (2023). https://doi.org/10.3390/pharmaceutics15020345

    Article  CAS  Google Scholar 

  67. Roh, S., Lee, K., Jung, Y., Yoo, J.: Facile method for immobilization of protein on elastic nanofibrous polymer membranes. Front. Mater. (2023). https://doi.org/10.3389/fmats.2023.1141154

    Article  Google Scholar 

  68. Kim, H.N., Choi, N.: Consideration of the mechanical properties of hydrogels for brain tissue engineering and brain-on-a-chip. BioChip J. 13(1), 8–19 (2019). https://doi.org/10.1007/s13206-018-3101-7

    Article  CAS  Google Scholar 

  69. Shachar, M., Tsur-Gang, O., Dvir, T., Leor, J., Cohen, S.: The effect of immobilized RGD peptide in alginate scaffolds on cardiac tissue engineering. Acta Biomater. 7(1), 152–162 (2011). https://doi.org/10.1016/j.actbio.2010.07.034

    Article  CAS  PubMed  Google Scholar 

  70. Vigneswari, S., Chai, J.M., Kamarudin, K.H., Amirul, A.A., Focarete, M.L., Ramakrishna, S.: Elucidating the surface functionality of biomimetic RGD peptides immobilized on nano-P(3HB-co-4HB) for H9c2 myoblast cell proliferation. Front Bioeng Biotechnol 8, 567693 (2020). https://doi.org/10.3389/fbioe.2020.567693

    Article  PubMed  PubMed Central  Google Scholar 

  71. Yang, M., Zhang, Z.C., Liu, Y., Chen, Y.R., Deng, R.H., Zhang, Z.N., Yu, J.K., Yuan, F.Z.: Function and mechanism of RGD in bone and cartilage tissue engineering. Front. Bioeng. Biotechnol. 9, 773636 (2021). https://doi.org/10.3389/fbioe.2021.773636

    Article  PubMed  PubMed Central  Google Scholar 

  72. Chen, J., Bly, R.A., Saad, M.M., AlKhodary, M.A., El-Backly, R.M., Cohen, D.J., Kattamis, N., Fatta, M.M., Moore, W.A., Arnold, C.B., Marei, M.K., Soboyejo, W.O.: In-vivo study of adhesion and bone growth around implanted laser groove/RGD-functionalized Ti-6Al-4V pins in rabbit femurs. Mater. Sci. Eng. C-Mater. Biol. Appl. 31(5), 826–832 (2011). https://doi.org/10.1016/j.msec.2010.12.019

    Article  CAS  Google Scholar 

  73. Mandal, C., Baek, M.N., Jung, K.H., Chai, J.C., Lee, Y.S., Chai, Y.G.: Gene expression profile associated with the reversine-mediated transdifferentiation of NIH-3T3 fibroblast cells into osteoblasts. BioChip J. 7(3), 278–287 (2013). https://doi.org/10.1007/s13206-013-7311-8

    Article  CAS  Google Scholar 

  74. Rammelt, S., Illert, T., Bierbaum, S., Scharnweber, D., Zwipp, H., Schneiders, W.: Coating of titanium implants with collagen, RGD peptide and chondroitin sulfate. Biomaterials 27(32), 5561–5571 (2006). https://doi.org/10.1016/j.biomaterials.2006.06.034

    Article  CAS  PubMed  Google Scholar 

  75. Bly, R.A., Cao, Y., Moore, W.A., Soboyejo, W.O.: Investigation of the effects of alkane phosphonic acid/RGD coatings on cell spreading and the interfacial strength between human osteosarcoma cells and Ti–6Al–4V. Mater. Sci. Eng. C-Mater. Biol. Appl. 27(1), 83–89 (2007). https://doi.org/10.1016/j.msec.2006.02.005

    Article  CAS  Google Scholar 

  76. Lee, S.H., Shin, H.: Matrices and scaffolds for delivery of bioactive molecules in bone and cartilage tissue engineering. Adv Drug Deliv Rev 59(4–5), 339–359 (2007). https://doi.org/10.1016/j.addr.2007.03.016

    Article  CAS  PubMed  Google Scholar 

  77. Park, H., Temenoff, J.S., Tabata, Y., Caplan, A.I., Mikos, A.G.: Injectable biodegradable hydrogel composites for rabbit marrow mesenchymal stem cell and growth factor delivery for cartilage tissue engineering. Biomaterials 28(21), 3217–3227 (2007). https://doi.org/10.1016/j.biomaterials.2007.03.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ito, Y.: Growth Factor Engineering for Biomaterials. ACS Biomater. Sci. Eng. 5(11), 5597–5609 (2019). https://doi.org/10.1021/acsbiomaterials.8b01649

    Article  CAS  PubMed  Google Scholar 

  79. Ham, T.R., Farrag, M., Leipzig, N.D.: Covalent growth factor tethering to direct neural stem cell differentiation and self-organization. Acta Biomater. 53, 140–151 (2017). https://doi.org/10.1016/j.actbio.2017.01.068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Yu, L.M., Liu, T., Ma, Y.L., Zhang, F., Huang, Y.C., Fan, Z.H.: Fabrication of silk-hyaluronan composite as a potential scaffold for tissue repair. Front. Bioeng. Biotechnol. 8, 578988 (2020). https://doi.org/10.3389/fbioe.2020.578988

    Article  PubMed  PubMed Central  Google Scholar 

  81. Salmeron-Sanchez, M., Dalby, M.J.: Synergistic growth factor microenvironments. Chem. Commun. 52(91), 13327–13336 (2016). https://doi.org/10.1039/c6cc06888j

    Article  CAS  Google Scholar 

  82. Pu, C., Lin, R., Liang, S., Qiu, X., Hou, H.: Smart surface-based cell sheet engineering for regenerative medicine. Trends Chem. 5(1), 88–101 (2023). https://doi.org/10.1016/j.trechm.2022.11.001

    Article  CAS  Google Scholar 

  83. Yamato, M., Okano, T.: Cell sheet engineering. Mater. Today 7(5), 42–47 (2004). https://doi.org/10.1016/s1369-7021(04)00234-2

    Article  CAS  Google Scholar 

  84. Kobayashi, J., Kikuchi, A., Aoyagi, T., Okano, T.: Cell sheet tissue engineering: Cell sheet preparation, harvesting/manipulation, and transplantation. J. Biomed. Mater. Res. Part A 107(5), 955–967 (2019). https://doi.org/10.1002/jbm.a.36627

    Article  CAS  Google Scholar 

  85. Nagase, K., Yamato, M., Kanazawa, H., Okano, T.: Poly(N-isopropylacrylamide)-based thermoresponsive surfaces provide new types of biomedical applications. Biomaterials 153, 27–48 (2018). https://doi.org/10.1016/j.biomaterials.2017.10.026

    Article  CAS  PubMed  Google Scholar 

  86. Elloumi-Hannachi, I., Yamato, M., Okano, T.: Cell sheet engineering: a unique nanotechnology for scaffold-free tissue reconstruction with clinical applications in regenerative medicine. J. Intern. Med. 267(1), 54–70 (2010). https://doi.org/10.1111/j.1365-2796.2009.02185.x

    Article  CAS  PubMed  Google Scholar 

  87. Guillaume-Gentil, O., Akiyama, Y., Schuler, M., Tang, C., Textor, M., Yamato, M., Okano, T., Vörös, J.: Polyelectrolyte coatings with a potential for electronic control and cell sheet engineering. Adv. Mater. 20(3), 560–565 (2008). https://doi.org/10.1002/adma.200700758

    Article  CAS  Google Scholar 

  88. Shin, S., Kim, N., Hong, J.W.: Comparison of surface modification techniques on polydimethylsiloxane to prevent protein adsorption. BioChip J. 12(2), 123–127 (2018). https://doi.org/10.1007/s13206-017-2210-z

    Article  CAS  Google Scholar 

  89. Park, J.W., Na, S., Kang, M., Sim, S.J., Jeon, N.L.: PDMS microchannel surface modification with teflon for algal lipid research. BioChip J. 11(3), 180–186 (2017). https://doi.org/10.1007/s13206-017-1302-0

    Article  CAS  Google Scholar 

  90. Zander, Z.K., Becker, M.L.: Antimicrobial and antifouling strategies for polymeric medical devices. ACS Macro Lett. 7(1), 16–25 (2018). https://doi.org/10.1021/acsmacrolett.7b00879

    Article  CAS  PubMed  Google Scholar 

  91. Kang, D.H., Kim, H.N., Kim, P., Suh, K.-Y.: Poly(ethylene glycol) (PEG) microwells in microfluidics: Fabrication methods and applications. BioChip J. 8(4), 241–253 (2014). https://doi.org/10.1007/s13206-014-8401-y

    Article  CAS  Google Scholar 

  92. Divandari, M., Trachsel, L., Yan, W., Rosenboom, J.G., Spencer, N.D., Zenobi-Wong, M., Morgese, G., Ramakrishna, S.N., Benetti, E.M.: Surface density variation within cyclic polymer brushes reveals topology effects on their nanotribological and biopassive Ppoperties. ACS Macro Lett. 7(12), 1455–1460 (2018). https://doi.org/10.1021/acsmacrolett.8b00847

    Article  CAS  PubMed  Google Scholar 

  93. Yoo, J., Birke, A., Kim, J., Jang, Y., Song, S.Y., Ryu, S., Kim, B.S., Kim, B.G., Barz, M., Char, K.: Cooperative catechol-functionalized polypept(o)ide brushes and Ag nanoparticles for combination of protein resistance and antimicrobial activity on metal oxide surfaces. Biomacromol 19(5), 1602–1613 (2018). https://doi.org/10.1021/acs.biomac.8b00135

    Article  CAS  Google Scholar 

  94. Ding, Z., Chen, C., Yu, Y., de Beer, S.: Synthetic strategies to enhance the long-term stability of polymer brush coatings. J. Mat. Chem. B 10(14), 2430–2443 (2022). https://doi.org/10.1039/d1tb02605d

    Article  CAS  Google Scholar 

  95. McVerry, B., Polasko, A., Rao, E., Haghniaz, R., Chen, D., He, N., Ramos, P., Hayashi, J., Curson, P., Wu, C.Y., Bandaru, P., Anderson, M., Bui, B., Sayegh, A., Mahendra, S., Carlo, D.D., Kreydin, E., Khademhosseini, A., Sheikhi, A., Kaner, R.B.: A readily scalable, clinically demonstrated, antibiofouling zwitterionic surface treatment for implantable medical devices. Adv. Mater. 34(20), e2200254 (2022). https://doi.org/10.1002/adma.202200254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Liu, J., Qu, S., Suo, Z., Yang, W.: Functional hydrogel coatings. Natl. Sci. Rev. 8(2), nwaa254 (2021). https://doi.org/10.1093/nsr/nwaa254

    Article  CAS  PubMed  Google Scholar 

  97. He, M., Cui, X., Jiang, H., Huang, X., Zhao, W., Zhao, C.: Super-anticoagulant heparin-mimicking hydrogel thin film attached substrate surfaces to improve hemocompatibility. Macromol. Biosci. 17, 2 (2017). https://doi.org/10.1002/mabi.201600281

    Article  CAS  Google Scholar 

  98. Lee, S.Y., Lee, Y., Le Thi, P., Oh, D.H., Park, K.D.: Sulfobetaine methacrylate hydrogel-coated anti-fouling surfaces for implantable biomedical devices. Biomater. Res. 22, 3 (2018). https://doi.org/10.1186/s40824-017-0113-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Yong, Y., Qiao, M., Chiu, A., Fuchs, S., Liu, Q., Pardo, Y., Worobo, R., Liu, Z., Ma, M.: Conformal hydrogel coatings on catheters to reduce biofouling. Langmuir 35(5), 1927–1934 (2019). https://doi.org/10.1021/acs.langmuir.8b03074

    Article  CAS  PubMed  Google Scholar 

  100. Zhao, C., Zhou, L., Chiao, M., Yang, W.: Antibacterial hydrogel coating: Strategies in surface chemistry. Adv. Colloid Interface Sci. 285, 102280 (2020). https://doi.org/10.1016/j.cis.2020.102280

    Article  CAS  PubMed  Google Scholar 

  101. Yang, W.J., Tao, X., Zhao, T., Weng, L., Kang, E.-T., Wang, L.: Antifouling and antibacterial hydrogel coatings with self-healing properties based on a dynamic disulfide exchange reaction. Polym. Chem. 6(39), 7027–7035 (2015). https://doi.org/10.1039/c5py00936g

    Article  CAS  Google Scholar 

  102. Yu, Y., Yuk, H., Parada, G.A., Wu, Y., Liu, X., Nabzdyk, C.S., Youcef-Toumi, K., Zang, J., Zhao, X.: Multifunctional “hydrogel skins” on diverse polymers with arbitrary shapes. Adv. Mater. 31(7), e1807101 (2019). https://doi.org/10.1002/adma.201807101

    Article  CAS  PubMed  Google Scholar 

  103. Howell, C., Vu, T.L., Lin, J.J., Kolle, S., Juthani, N., Watson, E., Weaver, J.C., Alvarenga, J., Aizenberg, J.: Self-replenishing vascularized fouling-release surfaces. ACS Appl. Mater. Interfaces 6(15), 13299–13307 (2014). https://doi.org/10.1021/am503150y

    Article  CAS  PubMed  Google Scholar 

  104. Wong, T.S., Kang, S.H., Tang, S.K., Smythe, E.J., Hatton, B.D., Grinthal, A., Aizenberg, J.: Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature 477(7365), 443–447 (2011). https://doi.org/10.1038/nature10447

    Article  CAS  PubMed  Google Scholar 

  105. Epstein, A.K., Wong, T.S., Belisle, R.A., Boggs, E.M., Aizenberg, J.: Liquid-infused structured surfaces with exceptional anti-biofouling performance. Proc. Natl. Acad. Sci. U. S. A. 109(33), 13182–13187 (2012). https://doi.org/10.1073/pnas.1201973109

    Article  PubMed  PubMed Central  Google Scholar 

  106. Chen, L., Park, S., Yoo, J., Hwang, H., Kim, H., Lee, J., Hong, J., Wooh, S.: One-step fabrication of universal slippery lubricated surfaces. Adv. Mater. Interfaces 7, 18 (2020). https://doi.org/10.1002/admi.202000305

    Article  CAS  Google Scholar 

  107. Park, K., Kim, S., Jo, Y., Park, J., Kim, I., Hwang, S., Lee, Y., Kim, S.Y., Seo, J.: Lubricant skin on diverse biomaterials with complex shapes via polydopamine-mediated surface functionalization for biomedical applications. Bioactive Mater. (2022). https://doi.org/10.1016/j.bioactmat.2022.07.019

    Article  Google Scholar 

  108. Park, A., Jeong, H.-H., Lee, J., Kim, K.P., Lee, C.-S.: Effect of shear stress on the formation of bacterial biofilm in a microfluidic channel. BioChip J. 5(3), 236–241 (2011). https://doi.org/10.1007/s13206-011-5307-9

    Article  CAS  Google Scholar 

  109. Chuang, H.F., Smith, R.C., Hammond, P.T.: Polyelectrolyte multilayers for tunable release of antibiotics. Biomacromol 9(6), 1660–1668 (2008). https://doi.org/10.1021/bm800185h

    Article  CAS  Google Scholar 

  110. Correia, V.G., Ferraria, A.M., Pinho, M.G., Aguiar-Ricardo, A.: Antimicrobial contact-active oligo(2-oxazoline)s-grafted surfaces for fast water disinfection at the point-of-use. Biomacromol 16(12), 3904–3915 (2015). https://doi.org/10.1021/acs.biomac.5b01243

    Article  CAS  Google Scholar 

  111. Li, X., Bai, H., Yang, Y., Yoon, J., Wang, S., Zhang, X.: Supramolecular antibacterial materials for combatting antibiotic resistance. Adv. Mater. (2018). https://doi.org/10.1002/adma.201805092e1805092

    Article  PubMed  PubMed Central  Google Scholar 

  112. Nystrom, L., Stromstedt, A.A., Schmidtchen, A., Malmsten, M.: Peptide-loaded microgels as antimicrobial and anti-inflammatory surface coatings. Biomacromol 19(8), 3456–3466 (2018). https://doi.org/10.1021/acs.biomac.8b00776

    Article  CAS  Google Scholar 

  113. Peng, K., Zou, T., Ding, W., Wang, R., Guo, J., Round, J.J., Tu, W., Liu, C., Hu, J.: Development of contact-killing non-leaching antimicrobial guanidyl-functionalized polymers via click chemistry. RSC Adv. 7(40), 24903–24913 (2017). https://doi.org/10.1039/c7ra02706k

    Article  CAS  Google Scholar 

  114. Kaur, R., Liu, S.: Antibacterial surface design – Contact kill. Prog. Surf. Sci. 91(3), 136–153 (2016). https://doi.org/10.1016/j.progsurf.2016.09.001

    Article  CAS  Google Scholar 

  115. Wang, B.L., Ren, K.F., Chang, H., Wang, J.L., Ji, J.: Construction of degradable multilayer films for enhanced antibacterial properties. ACS Appl. Mater. Interfaces 5(10), 4136–4143 (2013). https://doi.org/10.1021/am4000547

    Article  CAS  PubMed  Google Scholar 

  116. Del Olmo, J.A., Perez-Alvarez, L., Pacha-Olivenza, M.A., Ruiz-Rubio, L., Gartziandia, O., Vilas-Vilela, J.L., Alonso, J.M.: Antibacterial catechol-based hyaluronic acid, chitosan and poly (N-vinyl pyrrolidone) coatings onto Ti6Al4V surfaces for application as biomedical implant. Int. J. Biol. Macromol. 183, 1222–1235 (2021). https://doi.org/10.1016/j.ijbiomac.2021.05.034

    Article  CAS  PubMed  Google Scholar 

  117. Slavin, Y.N., Asnis, J., Hafeli, U.O., Bach, H.: Metal nanoparticles: understanding the mechanisms behind antibacterial activity. J. Nanobiotechnol. 15(1), 65 (2017). https://doi.org/10.1186/s12951-017-0308-z

    Article  CAS  Google Scholar 

  118. Wang, L., Hu, C., Shao, L.: The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int. J. Nanomed. 12, 1227–1249 (2017). https://doi.org/10.2147/IJN.S121956

    Article  CAS  Google Scholar 

  119. Yoon, S., Chung, Y., Lee, J.W., Chang, J., Han, J.G., Lee, J.H.: Biologically benign multi-functional mesoporous silica encapsulated gold/silver nanorods for anti-bacterial applications by on-demand release of silver ions. BioChip J. 13(4), 362–369 (2019). https://doi.org/10.1007/s13206-019-3407-0

    Article  CAS  Google Scholar 

  120. Song, C., Chang, Y., Cheng, L., Xu, Y., Chen, X., Zhang, L., Zhong, L., Dai, L.: Preparation, characterization, and antibacterial activity studies of silver-loaded poly(styrene-co-acrylic acid) nanocomposites. Mater. Sci. Eng. C-Mater. Biol. Appl. 36, 146–151 (2014). https://doi.org/10.1016/j.msec.2013.11.042

    Article  CAS  PubMed  Google Scholar 

  121. Zhang, Q.M., Serpe, M.J.: Versatile method for coating surfaces with functional and responsive polymer-based films. ACS Appl. Mater. Interfaces 7(49), 27547–27553 (2015). https://doi.org/10.1021/acsami.5b09875

    Article  CAS  PubMed  Google Scholar 

  122. Lee, J., Yoo, J., Kim, J., Jang, Y., Shin, K., Ha, E., Ryu, S., Kim, B.G., Wooh, S., Char, K.: Development of multimodal antibacterial surfaces using porous amine-reactive films incorporating lubricant and silver nanoparticles. ACS Appl. Mater. Interfaces 11(6), 6550–6560 (2019). https://doi.org/10.1021/acsami.8b20092

    Article  CAS  PubMed  Google Scholar 

  123. Cyphert, E.L., von Recum, H.A.: Emerging technologies for long-term antimicrobial device coatings: advantages and limitations. Exp. Biol. Med. 242(8), 788–798 (2017). https://doi.org/10.1177/1535370216688572

    Article  CAS  Google Scholar 

  124. Quoc, T.V., Ngoc, V.N., Bui, T.T., Jen, C.-P., Duc, T.C.: High-frequency interdigitated array electrode-based capacitive biosensor for protein detection. BioChip J. 13(4), 403–415 (2019). https://doi.org/10.1007/s13206-019-3412-3

    Article  CAS  Google Scholar 

  125. Son, M.H., Park, S.W., Sagong, H.Y., Jung, Y.K.: Recent advances in electrochemical and optical biosensors for cancer biomarker detection. BioChip J. 17(1), 44–67 (2023). https://doi.org/10.1007/s13206-022-00089-6

    Article  CAS  Google Scholar 

  126. Li, L., Wang, L., Xu, Q., Xu, L., Liang, W., Li, Y., Ding, M., Aldalbahi, A., Ge, Z., Wang, L., Yan, J., Lu, N., Li, J., Wen, Y., Liu, G.: Bacterial analysis using an electrochemical dna biosensor with poly-adenine-mediated DNA self-assembly. ACS Appl. Mater. Interfaces 10(8), 6895–6903 (2018). https://doi.org/10.1021/acsami.7b17327

    Article  CAS  PubMed  Google Scholar 

  127. Liu, M., Yuan, M., Lou, X., Mao, H., Zheng, D., Zou, R., Zou, N., Tang, X., Zhao, J.: Label-free optical detection of single-base mismatches by the combination of nuclease and gold nanoparticles. Biosens. Bioelectron. 26(11), 4294–4300 (2011). https://doi.org/10.1016/j.bios.2011.04.014

    Article  CAS  PubMed  Google Scholar 

  128. Sina, A.A., Howell, S., Carrascosa, L.G., Rauf, S., Shiddiky, M.J., Trau, M.: eMethylsorb: electrochemical quantification of DNA methylation at CpG resolution using DNA-gold affinity interactions. Chem. Commun. 50(86), 13153–13156 (2014). https://doi.org/10.1039/c4cc06732k

    Article  CAS  Google Scholar 

  129. Joh, D.Y., Hucknall, A.M., Wei, Q., Mason, K.A., Lund, M.L., Fontes, C.M., Hill, R.T., Blair, R., Zimmers, Z., Achar, R.K., Tseng, D., Gordan, R., Freemark, M., Ozcan, A., Chilkoti, A.: Inkjet-printed point-of-care immunoassay on a nanoscale polymer brush enables subpicomolar detection of analytes in blood. Proc. Natl. Acad. Sci. U. S. A. 114(34), E7054–E7062 (2017). https://doi.org/10.1073/pnas.1703200114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. You, J.B., Kang, K., Tran, T.T., Park, H., Hwang, W.R., Kim, J.M., Im, S.G.: PDMS-based turbulent microfluidic mixer. Lab. Chip 15(7), 1727–1735 (2015). https://doi.org/10.1039/c5lc00070j

    Article  CAS  PubMed  Google Scholar 

  131. Akther, F., Yakob, S.B., Nguyen, N.T., Ta, H.T.: Surface modification techniques for endothelial cell seeding in PDMS microfluidic devices. Biosensors (Basel) 10, 11 (2020). https://doi.org/10.3390/bios10110182

    Article  CAS  Google Scholar 

  132. Ebara, M., Hoffman, J.M., Stayton, P.S., Hoffman, A.S.: Surface modification of microfluidic channels by UV-mediated graft polymerization of non-fouling and ‘smart’ polymers. Radiat. Phys. Chem. 76(8–9), 1409–1413 (2007). https://doi.org/10.1016/j.radphyschem.2007.02.072

    Article  CAS  Google Scholar 

  133. Ha, Y., Kim, I.: Recent developments in innovative magnetic nanoparticles-based immunoassays: from improvement of conventional immunoassays to diagnosis of COVID-19. BioChip J. 16(4), 351–365 (2022). https://doi.org/10.1007/s13206-022-00064-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Park, M., Heo, Y.J.: Biosensing technologies for chronic diseases. BioChip J. 15(1), 1–13 (2021). https://doi.org/10.1007/s13206-021-00014-3

    Article  CAS  Google Scholar 

  135. Jang, M., Kim, H.N.: From Single- to multi-organ-on-a-chip system for studying metabolic diseases. BioChip J. (2023). https://doi.org/10.1007/s13206-023-00098-z

    Article  Google Scholar 

  136. Bae, J., Han, S., Park, S.: Recent advances in 3D bioprinted tumor microenvironment. BioChip J. 14(2), 137–147 (2020). https://doi.org/10.1007/s13206-020-4201-8

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by National R&D Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (Grant No. NRF-2021M3H4A4079294) and KIST research program (2E32170, 2E32351).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jin Yoo or Hyejeong Seong.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roh, S., Jang, Y., Yoo, J. et al. Surface Modification Strategies for Biomedical Applications: Enhancing Cell–Biomaterial Interfaces and Biochip Performances. BioChip J 17, 174–191 (2023). https://doi.org/10.1007/s13206-023-00104-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-023-00104-4

Keywords

Navigation