Skip to main content
Log in

Flexible Capillary Microfluidic Devices Based on Surface-Energy Modified Polydimethylsiloxane and Polymethylmethacrylate with Room-Temperature Chemical Bonding

  • Original Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

Polydimethylsiloxane (PDMS) has been widely used for the rapid prototyping of microfluidic devices for biosensor cartridges. However, using PDMS to prototype capillary-driven microfluidic devices is often limited by the difficulty of maintaining the surface energy of surface-treated PDMS for an extended period in addition to the degradation of the biosensing elements during the bonding process at elevated temperature. Herein, prototyping of a flexible capillary microfluidic channel (FCMC) device based on the room-temperature bonding of the surface energy-modified PDMS (m-PDMS) microfluidic channel and a thermoplastic lid, polymethylmethacrylate (PMMA), is introduced for prolonged control of passive liquid flow characteristics. The m-PDMS was fabricated by blending polydimethylsiloxane-ethylene oxide (60–70%) block copolymer (PDMS-b-PEO) additive with pre-PDMS, of which the water contact angles could be controlled between 38.5° and 78.5° by adjusting the ratio of the two components. Room-temperature bonding of the m-PDMS and PMMA sheets functionalized by 3-glycidoxypropyltrimethoxysilane and aminopropyltriethoxysilane, respectively, was introduced to fabricate the FCMC devices via the formation of a stable linker epoxy-amine without the requirement of elevated temperatures. The FCMC device possessed longevity to passively drive liquid in the channel for 2 months under ambient conditions due to the prolonged stable hydrophilicity of m-PDMS. The proposed approaches provide great potential for prototyping passive microfluidic devices for biosensor cartridge applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yuan, D., Yadav, S., Ta, H.T., Fallahi, H., An, H., Kashaninejad, N., Ooi, C.H., Nguyen, N.-T., Zhang, J.: Investigation of viscoelastic focusing of particles and cells in a zigzag microchannel. Electrophoresis 42, 2230–2237 (2021)

    Article  CAS  PubMed  Google Scholar 

  2. Xu, D., Huang, X., Guo, J., Ma, X.: Automatic smartphone-based microfluidic biosensor system at the point of care. Biosensors 110, 78–88 (2018)

    CAS  Google Scholar 

  3. Park, J., Hyun Han, D., Park, J.-K.: Towards practical sample preparation in point-of-care testing: user-friendly microfluidic devices. Lab Chip 20, 1191–1203 (2020)

    Article  CAS  PubMed  Google Scholar 

  4. Hassanpour-Tamrin, S., Sanati-Nezhad, A., Sen, A.: A simple and low-cost approach for irreversible bonding of polymethylmethacrylate and polydimethylsiloxane at room temperature for high-pressure hybrid microfluidics. Sci Rep. 11, 4821 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chen, P.-C., Duong, L.H.: Novel solvent bonding method for thermoplastic microfluidic chips. Sens. Actuators B Chem. 237, 556–562 (2016)

    Article  CAS  Google Scholar 

  6. Wu, W., Wu, J., Kim, J.-H., Yoon Lee, N.: Instantaneous room temperature bonding of a wide range of non-silicon substrates with poly(dimethylsiloxane) (PDMS) elastomer mediated by a mercaptosilane. Lab Chip 15, 2819–2825 (2015)

    Article  CAS  PubMed  Google Scholar 

  7. Sivakumar, R., Yoon Lee, N.: Chemically robust succinimide-group-assisted irreversible bonding of poly(dimethylsiloxane)–thermoplastic microfluidic devices at room temperature. Analyst. 145, 6887–6894 (2020)

    Article  PubMed  Google Scholar 

  8. Bhattacharya, S., Datta, A., Berg, J.M., Gangopadhyay, S.: Studies on surface wettability of poly(dimethyl) siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength. J. Microelectromech. Syst. J. 14, 590–597 (2005)

    Article  CAS  Google Scholar 

  9. Tennico, Y.H., Koesdjojo, M.T., Kondo, S., Mandrell, D.T., Remcho, V.T.: Surface modification-assisted bonding of polymer-based microfluidic devices. Sens. Actuators B Chem. 143, 799–804 (2010)

    Article  CAS  Google Scholar 

  10. Bodas, D., Khan-Malek, C.: Hydrophilization and hydrophobic recovery of PDMS by oxygen plasma and chemical treatment—an SEM investigation. Sens. Actuators B Chem. 123, 368–373 (2007)

    Article  CAS  Google Scholar 

  11. Tang, L., Yoon Lee, N.: A facile route for irreversible bonding of plastic-PDMS hybrid microdevices at room temperature. Lab Chip 10, 1274–1280 (2010)

    Article  CAS  PubMed  Google Scholar 

  12. Sunkara, V., Park, D.-K., Hwang, H., Chantiwas, R., Soper, S.A., Cho, Y.-K.: Simple room temperature bonding of thermoplastics and poly(dimethylsiloxane). Lab Chip 11, 962–965 (2011)

    Article  CAS  PubMed  Google Scholar 

  13. Hu, S., Ren, X., Bachman, M., Sims, C.E., Li, G.P., Allbritton, N.: Surface modification of poly(dimethylsiloxane) microfluidic devices by ultraviolet polymer grafting. Anal. Chem. 74, 4117–4123 (2002)

    Article  CAS  PubMed  Google Scholar 

  14. Hong, S.M., Kim, S.H., Kim, J.H., Hwang, H.I.: Hydrophilic surface modification of PDMS using atmospheric RF plasma. J. Phys. Conf. Ser. 34, 656–661 (2006)

    Article  CAS  Google Scholar 

  15. Wong, I., Ho, C.-M.: Surface molecular property modifications for poly(dimethylsiloxane) (PDMS) based microfluidic devices. Microfluid. Nanofluid. 7, 291 (2009)

    Article  CAS  PubMed  Google Scholar 

  16. Gomez-Sjoberg, R., Leyrat, A.A., Houseman, B.T., Shokat, K., Quake, S.R.: Biocompatibility and reduced drug absorption of sol−gel-treated poly (dimethyl siloxane) for microfluidic cell culture applications. Anal. Chem. 82, 8954–8960 (2010)

    Article  CAS  PubMed  Google Scholar 

  17. Tan, S.H., Nguyen, N.-T., Chua, Y.C., Kang, T.G.: Oxygen plasma treatment for reducing hydrophobicity of a sealed polydimethylsiloxane microchannel. Biomicrofluidics 4, 032204 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zhang, J., Chen, Y., Brook, M.A.: Facile functionalization of PDMS elastomer surfaces using thiolene click chemistry. Langmuir 29, 12432–12442 (2013)

    Article  CAS  PubMed  Google Scholar 

  19. Yao, M., Fang, J.: Hydrophilic PEO-PDMS for microfluidic applications. J. Micromech. Microeng. 22, 025012 (2012)

    Article  Google Scholar 

  20. O’Brien, D.J., Sedlack, A.J.H., Bhatia, P., Jensen, C.J., Quintana-Puebla, A., Paranjape, M.: Systematic characterization of hydrophilized polydimethylsiloxane. J. Microelectromech. Syst. J. 29, 1216–1224 (2020)

    Article  Google Scholar 

  21. Huang, B., Wu, H., Kim, S., Kobilka, K.B., Zare, N.R.: Phospholipid biotinylation of polydimethylsiloxane (PDMS) for protein immobilization. Lab Chip 6, 369–373 (2006)

    Article  CAS  PubMed  Google Scholar 

  22. Zhou, J., Yan, H., Ren, K., Dai, W., Wu, H.: Convenient method for modifying poly(dimethylsiloxane) with poly(ethylene glycol) in microfluidics. Anal. Chem. 81, 6627–6632 (2009)

    Article  CAS  PubMed  Google Scholar 

  23. Yu, K., Han, Y.: A stable PEO-tethered PDMS surface having controllable wetting property by a swelling–deswelling process. Soft Matter 2, 705–709 (2006)

    Article  CAS  PubMed  Google Scholar 

  24. Gökaltun, A., Kang, Y.B., Yarmush, M.L., Usta, O.B., Asatekin, A.: Simple surface modification of poly(dimethylsiloxane) via surface segregating smart polymers for biomicrofluidics. Sci. Rep. 9, 7377 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  25. Tang, L., Lee, N.Y.: A facile route for irreversible bonding of plastic-PDMS hybrid microdevices at room temperature. Lab Chip. 10, 1274–1280 (2010)

    Article  CAS  PubMed  Google Scholar 

  26. Sivakumar, R., Yoon Lee, N.: Microfluidic device fabrication mediated by surface chemical bonding. Analyst. 145, 4096–4110 (2020)

    Article  CAS  PubMed  Google Scholar 

  27. Vo, T.N.A., Chen, P.-C.: Maximizing interfacial bonding strength between PDMS and PMMA substrates for manufacturing hybrid microfluidic devices withstanding extremely high flow rate and high operation pressure. Sens. Actuator A Phys. 334, 113330 (2022)

    Article  CAS  Google Scholar 

  28. Shi, Q., Ye, S., Kristalyn, C., Su, Y., Jiang, Z., Chen, Z.: Probing molecular-level surface structures of polyethersulfone/pluronic F127 blends using sum-frequency generation vibrational spectroscopy. Langmuir 24, 7939–7946 (2008)

    Article  CAS  PubMed  Google Scholar 

  29. Zhao, X., Su, Y., Li, Y., Zhang, R., Zhao, J., Jiang, Z.: Engineering amphiphilic membrane surfaces based on PEO and PDMS segments for improved antifouling performances. J. Membr. Sci. 450, 111–123 (2014)

    Article  Google Scholar 

  30. Zhang, H., Chiao, M.: Anti-fouling coatings of poly(dimethylsiloxane) devices for biological and biomedical applications. J. Med. Biol. Eng. 35(2), 143–155 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  31. Ehlers, J.-E., Rondan, N.G., Huynh, L.K., Pham, H., Marks, M., Truong, T.N.: Theoretical study on mechanisms of the epoxy−amine curing reaction. Macromolecules 40, 4370–4377 (2007)

    Article  CAS  Google Scholar 

  32. Gupta, N.S., et al.: Tuning thermal and mechanical properties of polydimethylsiloxane with carbon fibers. Polymers 13(7), 1141 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kumar, S., et al.: Biocompatible self-assembled monolayer platform based on (3-glycidoxypropyl) trimethoxysilane for total cholesterol estimation. Anal. Methods 3(10), 2237–2245 (2011)

    Article  CAS  Google Scholar 

  34. Kalakonda, P., Banne, S.: Thermomechanical properties of PMMA and modified SWCNT composites. Nanotechnol. Sci. Appl. 10, 45–52 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kim, J., et al.: Formation, structure, and reactivity of amino-terminated organic films on silicon substrates. J. Colloid Interface Sci. 329(1), 114–119 (2009)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Lai Thi Ngoc Huyen and Seok Ju Hong contributed equally to this work. This research was supported by the Basic Science Research Program (no. 2019R1A6A1A03033215) of the National Research Foundation (NRF) of Korea funded by the Ministry of Education and the Nano Material Technology Development Program (NRF-2021M3H4A4079521) of the National Research Foundation (NRF) of Korea funded by the Ministry of Science, ICT, & Future Planning.

Author information

Authors and Affiliations

Authors

Contributions

LTNH: conceptualization, methodology, data curation, formal analysis, writing—original draft. HSJ: conceptualization, methodology, data curation. TQT: conceptualization, writing—review and editing. MM: data curation (cell culture). ARK: data curation (cell culture). N-EL: conceptualization, supervision, project administration, funding acquisition, writing—review and editing.

Corresponding author

Correspondence to Nae-Eung Lee.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 727 KB)

Supplementary file2 (MP4 33938 KB)

Supplementary file3 (MP4 17238 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huyen, L.T.N., Hong, S.J., Trung, T.Q. et al. Flexible Capillary Microfluidic Devices Based on Surface-Energy Modified Polydimethylsiloxane and Polymethylmethacrylate with Room-Temperature Chemical Bonding. BioChip J 17, 120–132 (2023). https://doi.org/10.1007/s13206-023-00096-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-023-00096-1

Keywords

Navigation