Skip to main content
Log in

Production, characterization and bio-emulsifying application of exopolysaccharides from Rhodotorula mucilaginosa YMM19

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Microbial exopolysaccharides (EPS) are high molecular weight polymers having different sugar residues. EPS have potential applications in different fields, such as medicine, food and environment. Therefore, there is a growing interest in production, characterization and application of EPS from different microorganisms. The present study designed to investigate the production and characterization of EPS from Rhodotorula mucilaginosa YMM19 isolated from Morus nigra L. fruits as well as to examine their potential emulsifying properties. Effect of NaCl concentration, incubation period and pH on the production of EPS was studied. The maximum EPS production by yeast was achieved at 10% NaCl (9741.84 mg/l). The best incubation time for production of EPS was 5 days. Production of EPS decreased under neutral condition and increased at acidic and alkaline condition. The structural feature of EPS was examined by FT-IR and NMR spectral analysis and confirmed the presence of glucose, glucopyranose and galactose. The isolated EPS showed higher emulsification capacity with emulsification activity of 71% and emulsifying index of 60%. The EPS gave strong emulsification for farnesol and was more effective than sodium dodecyl sulphate, a reference emulsifier, in enhancing the herbicidal activity of farnesol against Melilotus indicus under greenhouse condition. The results suggest that the EPS produced by YMM19 strain has a potential to be used as emulsifying agent in pesticide formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6.
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abdelgaleil SAM, Abou-Taleb HK, Al-Nagar NMA, Shawir MS (2020) Antifeedant, growth regulatory and biochemical effects of terpenes and phenylpropenes on Spodoptera littoralis Boisduval. Int J Trop Insect Sci 40:423–433

    Article  Google Scholar 

  • Al-Nagar NMA, Abou-Taleb HK, Shawir MS, Abdelgaleil SAM (2020) Comparative toxicity, growth inhibitory and biochemical effects of terpenes and phenylpropenes on Spodoptera littoralis (Boisd.). J Asia Pac Entomol 23:67–75

    Article  Google Scholar 

  • Anvari M, Joyner HS (2018) Effect of fish gelatin and gum arabic interactions on concentrated emulsion large amplitude oscillatory shear behavior and tribological properties. Food Hydrocoll 79:518–525

    Article  CAS  Google Scholar 

  • Appaiah AKA, Karanth NGK (1991) Insecticide specific emulsifier production by hexachlorocyclohexane utilizing Pseudomonas tralucida Ptm+ strain. Biotechnol Lett 13:371–374

    Article  CAS  Google Scholar 

  • Awad HH (2012) Effect of Bacillus thuringiensis and farnesol on haemocytes response and lysozymal activity of the black cut worm Agrotis ipsilon larvae. Asian J Biol Sci 5:157–170

    Article  CAS  Google Scholar 

  • Bakkali F, Averbeck S, Averbeck D, Idaomar M (2008) Biological effects of essential oils—a review. Food Chem Toxicol 46:446–475

    Article  CAS  PubMed  Google Scholar 

  • Banat IM, Makkar RS, Cameotra SS (2000) Potential commercial applications of microbial surfactants. Appl Microbiol Biotechnol 53:495–508

    Article  CAS  PubMed  Google Scholar 

  • Banerjee A, Das D, Rudra SG, Mazumder K, Andler R, Bandopadhyay R (2020) Characterization of exopolysaccharide produced by Pseudomonas sp. PFAB4 for synthesis of EPS-coated AgNPs with antimicrobial properties. J Polym Environ 28:242–256

    Article  CAS  Google Scholar 

  • Biria D, Maghsoudi E, Roostaazad R, Dadafarin H, Sahebghadam Lotfi A, Amoozegar MA (2009) Purification and characterization of a novel biosurfactant produced by Bacillus licheniformis MS3. World J Microbiol Biotechnol 26:871–878

    Article  CAS  Google Scholar 

  • Calvo C, Manzanera M, Silva-Castro GA, Uad I, Gonzalez-Lopez J (2009) Application of bioemulsifiers in soil oil bioremediation processes. Future Prospects Sci Total Environ 407:3634–3640

    Article  CAS  PubMed  Google Scholar 

  • Cao Z, Wang Z, Shang Z, Zhao J (2017) Classification and identification of Rhodobryum roseum Limpr and its adulterants based on Fourier-transform infrared spectroscopy (FTIR) and chemometrics. PLoS ONE 16:2. https://doi.org/10.1371/journal.pone.0172359.e0172359

    Article  Google Scholar 

  • Castellane TC, Persona MR, Campanharo JC, de Macedo Lemos EG (2015) Production of exopolysaccharide from rhizobia with potential biotechnological and bioremediation applications. Int J Biol Macromol 74:515–522

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Jiang X, Xu M, Zhang M, Huang R, Huang J, Qi F (2019) Co-production of farnesol and coenzyme Q10 from metabolically engineered Rhodobacter sphaeroides. Microb Cell Fact 18:98

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cooper DG, Goldenberg BG (1987) Surface-active agents from 2 Bacillus species. Appl Environ Microbiol 53:224–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darwish AA, Al-Bar OA, Yousef RH, Moselhy SS, Ahmed YM, Hakeen KR (2019) Production of antioxidant exopolysaccharide from Pseudomonas aeruginosa utilizing heavey oil as a solo carbon source. Phcog Res 11:378–383

    Article  CAS  Google Scholar 

  • Das P, Mukherjee S, Sen R (2008) Improved bioavailability and biodegradation of a model polyaromatic hydrocarbon by a biosurfactant producing bacterium of marine origin. Chemosphere 72:1229–1234

    Article  CAS  PubMed  Google Scholar 

  • Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 61:47–64

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Feng J, Chen Q, Wu X, Jafari SM, McClements DJ (2018) Formulation of oil-in-water emulsions for pesticide applications: impact of surfactant type and concentration on physical stability. Environ Sci Pollut Res 25:21742–21751

    Article  CAS  Google Scholar 

  • Franck A (2002) Technological functionality of inulin and oligofructose. Br J Nutr 87(Suppl 2):S287-291

    Article  CAS  PubMed  Google Scholar 

  • Ghojavand H, Vahabzadeh F, Roayaei E, Shahraki AK (2008) Production and properties of a biosurfactant obtained from a member of the Bacillus subtilis group (PTCC 1696). J Colloid Interface Sci 324:172–176

    Article  CAS  PubMed  Google Scholar 

  • Govarthanan M, Jeon C-H, Jeon Y-H, Kwon J-H, Bae H, Kim W (2020) Non-toxic nano approach for wastewater treatment using Chlorella vulgaris exopolysaccharides immobilized in iron-magnetic nanoparticles. Int J Biol Macromol 162:1241–1249

    Article  CAS  PubMed  Google Scholar 

  • Gupta A, Thakur IS (2016) Study of optimization of wastewater contaminant removal along with extracellular polymeric substances (EPS) production by a thermotolerant Bacillus sp. ISTVK1 isolated from heat shocked sewage sludge. Bioresour Technol 213:21–30

    Article  CAS  PubMed  Google Scholar 

  • Gupta J, Rathour R, Dupont CL, Kaul D, Thakur IS (2021) Genomic insights into waste valorized extracellular polymeric substances (EPS) produced by Bacillus sp. ISTL8. Environ Res 192:110277

    Article  CAS  PubMed  Google Scholar 

  • Hamidi M, Gholipour AR, Delattre C, Sesdighi F, Seveiri RM, Pasdaran A, Kheirandish S, Pierre G, Kozani PS, Kozani PS (2020) Production, characterization and biological activities of exopolysaccharides from a new cold-adapted yeast: Rhodotorula mucilaginosa sp. GUMS16. Int J Biol Macromol 151:268–277

    Article  CAS  PubMed  Google Scholar 

  • Han YW, Clarke MA (1990) Production and characterization of microbial levan. J Agric Food Chem 38:393–396

    Article  CAS  Google Scholar 

  • Hassan SW, Ibrahim HA (2017) Production, characterization and valuable applications of exopolysaccharides from marine Bacillus subtilis SH1. Pol J Microbiol 66:449–461

    Article  PubMed  Google Scholar 

  • Imeson A (2010) Food stabilisers, thickening and gelling agents. Wiley Blackwell, Oxford

    Google Scholar 

  • Ismail B, Nampoothiri KM (2010) Production, purification and structural characterization of an exopolysaccharide produced by a probiotic Lactobacillus plantarum MTCC 9510. Arch Microbiol 192:1049–1057

    Article  CAS  PubMed  Google Scholar 

  • Jindal N, Khattar JS (2018) Microbial polysaccharides in food industry. In: Grumezescu AM, Holban AM (eds) Biopolymers for food design. Academic Press, Elsevier, Handbook of food bioengineering, pp 95–123

    Google Scholar 

  • Joulak I, Azabou S, Finore I, Poli A, Nicolaus B, Donato PD, Bkhairia I, Dumas E, Gharsallaoui A, Immirzi B (2020) Structural characterization and functional properties of novel exopolysaccharide from the extremely halotolerant Halomonas elongata S6. Int J Biol Macromol 164:95–104

    Article  CAS  PubMed  Google Scholar 

  • Jung YY, Hwang ST, Sethi G, Fan L, Arfuso F, Ahn KS (2018) Potential anti-inflammatory and anti-cancer properties of farnesol. Molecules 23:2827

    Article  CAS  PubMed Central  Google Scholar 

  • Kavitake D, Balyan S, Devi PB, Shetty PH (2020) Evaluation of oil-in-water (O/W) emulsifying properties of galactan exopolysaccharide from Weissella confusa KR780676. J Food Sci Technol 57:1579–1585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kielak AM, Castellane TC, Campanharo JC, Colnago LA, Costa OY, Da Silva MLC, Van Veen JA, Lemos EG, Kuramae EE (2017) Characterization of novel Acidobacteria exopolysaccharides with potential industrial and ecological applications. Sci Rep 7:1–11

    Article  CAS  Google Scholar 

  • Kim HM, Park MK, Yun JW (2006) Culture pH affects exopolysaccharide production in submerged mycelia culture of Ganoderma lucidum. Appl Biochem Biotechnol 134:249–262

    Article  CAS  PubMed  Google Scholar 

  • Krishnaswamy UR, Lakshmanaperumalsamy P, Achlesh D (2021) Microbial Exopolysaccharides as Biosurfactants in Environmental and Industrial Applications. In: Maddela NR, García LC, Chakraborty CS (eds) Advances in the Domain of Environmental Biotechnology. Springer, pp 81–111

    Chapter  Google Scholar 

  • Kumar AS, Mody K, Jha B (2007) Bacterial exopolysaccharides–a perception. J Basic Microbiol 47:103–117

    Article  CAS  PubMed  Google Scholar 

  • Lee SC, Kim SH, Park IH, Chung SY, Choi YL (2007) Isolation and structural analysis of bamylocin A, novel lipopeptide from Bacillus amyloliquefaciens LP03 having antagonistic and crude oil-emulsifying activity. Arch Microbiol 188:307–312

    Article  CAS  PubMed  Google Scholar 

  • Li H, Huang L, Zhang Y, Yan Y (2020) Production, characterization and immunomodulatory activity of an extracellular polysaccharide from Rhodotorula mucilaginosa YL-1 isolated from Sea salt field. Mar Drugs 18:595

    Article  CAS  PubMed Central  Google Scholar 

  • Liu Y, Yang L, Molin S (2010) Synergistic activities of an efflux pump inhibitor and iron chelators against Pseudomonas aeruginosa growth and biofilm formation. Antimicrob Agents Chemother 54:3960–3963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopes EM, Castellane TCL, Moretto C, Lemos EGM, Souza JAM (2014) Emulsification properties of bioemulsifiers produced by wild-type and mutant Bradyrhizobium elkanii strains. J Bioremed Biodeg 5:245

    Google Scholar 

  • Luna JM, Rufino RD, Sarubbo LA, Campos-Takaki GM (2013) Characterisation, surface properties and biological activity of a biosurfactant produced from industrial waste by Candida sphaerica UCP0995 for application in the petroleum industry. Colloids Surf B 102:202–209

    Article  CAS  Google Scholar 

  • Ma W, Chen X, Wang B, Lou W, Chen X, Hua J, Sun Y, Zhao Y, Peng T (2018) Characterization, antioxidativity, and anti-carcinoma activity of exopolysaccharide extract from Rhodotorula mucilaginosa CICC 33013. Carbohydr Polym 181:768–777

    Article  CAS  PubMed  Google Scholar 

  • Maalej H, Hmidet N, Boisset C, Buon L, Heyraud A, Nasri M (2015) Optimization of exopolysaccharide production from Pseudomonas stutzeri AS22 and examination of its metal-binding abilities. J Appl Microbiol 118:356–367

    Article  CAS  PubMed  Google Scholar 

  • Madhuri KV, Rabhakar KV (2014) Microbial exopolysaccharides: biosynthesis and potential applications. Orient J Chem 30:1401–1410

    Article  CAS  Google Scholar 

  • Medina-Ramirez CF, Castañeda-Guel MT, Alvarez-Gonzalez M, Montesinos-Castellanos A, Morones-Ramirez JR, López-Guajardo EA, Gómez-Loredo A (2020) Application of extractive fermentation on the recuperation of exopolysaccharide from Rhodotorula mucilaginosa UANL-001L. Fermentation 6:108

    Article  CAS  Google Scholar 

  • Mirzaei Seveiri R, Hamidi M, Delattre C, Sedighian H, Pierre G, Rahmani B, Darzi S, Brasselet C, Karimitabar F, Razaghpoor A, Amani J (2020) Characterization and prospective applications of the exopolysaccharides produced by Rhodosporidium babjevae. Adv Pharm Bull 10:254–263

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nguyen P-T, Nguyen T-T, Bui D-C, Hong P-T, Hoang Q-K, Nguyen H-T (2020) Exopolysaccharide production by lactic acid bacteria: the manipulation of environmental stresses for industrial applications. AIMS Microbiol 6:451–263

    Article  PubMed  PubMed Central  Google Scholar 

  • Nwodo U, Green E, Okoh AI (2012) Bacterial exopolysaccharides: functionality and prospects. Int J Mol Sci 13:14002–14015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Donnell K (1993) Ribosomal DNA internal transcribed spacers are highly divergent in the phytopathogenic ascomycete Fusarium sambucinum (Gibberella pulicaris). Curr Genet 22:213–220

    Article  Google Scholar 

  • Parikh A, Madamwar D (2006) Partial characterization of extracellular polysaccharides from cyanobacteria. Bioresour Technol Rep 97:1822–1827

    Article  CAS  Google Scholar 

  • Poli A, Anzelmo G, Nicolaus B (2010) Bacterial exopolysaccharides from extreme marine habitats: production, characterization and biological activities. Mar Drugs 8:1779–1802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rana S, Upadhyay LSB (2020) Microbial exopolysaccharides: synthesis pathways, types and their commercial applications. Int J Biol Macromol 157:577–583

    Article  CAS  PubMed  Google Scholar 

  • Rieger MM (1986) Emulsion. In: Lachman L, Lieberman HA, Kanig JL (eds) The theory and practice of industrial pharmacy, 3rd edn. Lea and Febiger, Philadelphia, pp 502–532

    Google Scholar 

  • Rodrigues LR, Teixeira JA, Vander Mei HC, Oliveira R (2006) Physicochemical and functional characterization of a biosurfactant produced by Lactococcus lactis 53. Colloids Surf B 49:79–86

    Article  CAS  Google Scholar 

  • Rosenberg E, Ron E (1997) Bioemulsans: microbial polymeric emulsifiers. Curr Opin Biotechnol 8:313–316

    Article  CAS  PubMed  Google Scholar 

  • Saad MMG, Gouda NAA, Abdelgaleil SAM (2019) Bioherbicidal activity of terpenes and phenylpropenes against Echinochloa crus-galli. J Environ Sci Health B 54:954–963

    Article  CAS  PubMed  Google Scholar 

  • Santos DKF, Rufino RD, Luna JM, Santos VA, Salgueiro AA, Sarubbo L (2013) Synthesis and evaluation of biosurfactant produced by Candida lipolytica using animal fat and corn steep liquor. J Pet Sci Eng 105:43–50

    Article  CAS  Google Scholar 

  • Satpute SK, Banat IM, Dhakephalkar PK, Banpurkar AG, Chopade BA (2010) Biosurfactants, bioemulsifiers and exopolysaccharides from marine microorganisms. Biotechnol Adv 28:436–450

    Article  CAS  PubMed  Google Scholar 

  • Satpute SK, Zinjarde SS, Banat IM (2018) Recent updates on biosurfactant/s in food industry. In: Microbial cell factories. Taylor & Francis, pp 1–20

  • Seveiri RM, Hamidi M, Delattre C, Sedighian H, Pierre G, Rahmani B, Darzi S, Brasselet C, Karimitabar F, Razaghpoor A (2020) Characterization and prospective applications of the exopolysaccharides produced by Rhodosporidium babjevae. Adv Pharm Bull 10:254–263

    Article  CAS  Google Scholar 

  • Sheng GP, Yu HQ, Yue Z (2006) Factors influencing the production of extracellular polymeric substances by Rhodopseudomonas acidophila. Int Biodeterior Biodegr 58:89–93

    Article  CAS  Google Scholar 

  • Siddharth T, Sridhar P, Vinila V, Tyagi R (2021) Environmental applications of microbial extracellular polymeric substance (EPS): a review. J Environ Manag 287:112307

    Article  CAS  Google Scholar 

  • Silambarasan S, Logeswari P, Cornejo P, Kannan VR (2019) Evaluation of the production of exopolysaccharide by plant growth promoting yeast Rhodotorula sp. strain CAH2 under abiotic stress conditions. Int J Biol Macromol 121:55–62

    Article  CAS  PubMed  Google Scholar 

  • Synytsya A, Novák M (2013) Structural diversity of fungal glucans. Carbohydr Polym 92:792–809

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tiwari ON, Sasmal S, Kataria AK, Devi I (2020) Application of microbial extracellular carbohydrate polymeric substances in food and allied industries. 3 Biotech 10:1–17

    Article  CAS  Google Scholar 

  • Uzoigwe C, Burgess JG, Ennis CJ, Rahman PKSM (2015) Bioemulsifiers are not biosurfactants and require different screening approaches. Front Microbiol 6:245

    Article  PubMed  PubMed Central  Google Scholar 

  • Vázquez-Rodríguez A, Vasto-Anzaldo XG, Leon-Buitimea A, Zarate X, Morones-Ramírez JR (2020) Antibacterial and antibiofilm activity of biosynthesized silver nanoparticles coated with exopolysaccharides obtained from Rhodotorula mucilaginosa. IEEE Trans Nanobiosci 19:498–503

    Article  Google Scholar 

  • Velázquez-Aradillas C, Toribio-Jiménez J, del Carmen Ángeles González-Chávez M, Bautista F, Cebrián ME, Esparza-García FJ, Rodríguez-Vázquez R (2011) Characterisation of a biosurfactant produced by a Bacillus cereus strain tolerant to cadmium and isolated from green coffee grain. World J Microbiol Biotechnol 27:907–913

    Article  CAS  Google Scholar 

  • Vijayabaskar P, Babinastarlin S, Shankar T, Sivakumar T, Anandapandian KTK (2011) Quantification and characterization of exopolysaccharides from Bacillus subtilis (MTCC 121). Adv Biol Res 5:71–76

    CAS  Google Scholar 

  • Wang X, Shao C, Liu L, Guo X, Xu Y, Lu X (2017) Optimization, partial characterization and antioxidant activity of an exopolysaccharide from Lactobacillus plantarum KX041. Int J Biol Macromol 103:1173–1184

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Ma J, Wang X, Wang Z, Tang L, Chen H, Li Z (2020) Detoxification of Cu(II) by the red yeast Rhodotorula mucilaginosa: from extracellular to intracellular. App Microbiol Biotechnol 104:10181–10190

    Article  CAS  Google Scholar 

  • Whitfield C, Wear SS, Sande C (2020) Assembly of bacterial capsular polysaccharides and exopolysaccharides. Ann Rev Microbiol 74:521–543

    Article  CAS  Google Scholar 

  • Ye L, Zhang J, Yang Y, Zhou S, Liu Y, Tang Q, Du X, Chen H, Pan Y (2009) Structural characterisation of a heteropolysaccharide by NMR spectra. Food Chem 112:962–966

    Article  CAS  Google Scholar 

  • Ye M, Liang J, Liao X, Li L, Feng X, Qian W, Zhou S, Sun S (2021) Bioleaching for detoxification of waste flotation tailings: relationship between EPS substances and bioleaching behavior. J Environ Manag 279:111795

    Article  CAS  Google Scholar 

  • Zannini E, Waters DM, Coffey A, Arendt EK (2016) Production, properties, and industrial food application of lactic acid bacteria-derived exopolysaccharides. Appl Microbiol Biotechnol 100:1121–1135

    Article  CAS  PubMed  Google Scholar 

  • Zeng W, Li F, Wu C, Yu R, Wu X, Shen L, Liu Y, Qiu G, Li J (2020) Role of extracellular polymeric substance (EPS) in toxicity response of soil bacteria Bacillus sp. S3 to multiple heavy metals. Bioprocess Biosyst Eng 43:153–167

    Article  CAS  PubMed  Google Scholar 

  • Zheng C, Li Z, Su J, Zhang R, Liu C, Zhao M (2012) Characterization and emulsifying property of a novel bioemulsifier by Aeribacillus pallidus YM-1. J Appl Microbiol 113:44–51

    Article  CAS  PubMed  Google Scholar 

  • Zikmanis P, Brants K, Kolesovs S, Semjonovs P (2020) Extracellular polysaccharides produced by bacteria of the Leuconostoc genus. World J Microbiol Biotechnol 36:1–18

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

YMMM and MMGS designed the work. YMMM and MMGS conducted the experiments. YMMM, MMGS and SAMA analyzed and interpreted the results. YMMM, MMGS and SAMA drafted the manuscript. SAMA wrote the final manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Samir A. M. Abdelgaleil.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest in the publication.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammed, Y.M.M., Saad, M.M.G. & Abdelgaleil, S.A.M. Production, characterization and bio-emulsifying application of exopolysaccharides from Rhodotorula mucilaginosa YMM19. 3 Biotech 11, 349 (2021). https://doi.org/10.1007/s13205-021-02898-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-021-02898-2

Keywords

Navigation