Skip to main content

Advertisement

Log in

Production, properties, and industrial food application of lactic acid bacteria-derived exopolysaccharides

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Exopolysaccharides (EPS)-producing lactic acid bacteria (LAB) are industrially important microorganisms in the development of functional food products and are used as starter cultures or coadjutants to develop fermented foods. There is large variability in EPS production by LAB in terms of chemical composition, quantity, molecular size, charge, presence of side chains, and rigidity of the molecules. The main body of the review will cover practical aspects concerning the structural diversity structure of EPS, and their concrete application in food industries is reported in details. To strengthen the food application and process feasibility of LAB EPS at industrial level, a future academic research should be combined with industrial input to understand the technical shortfalls that EPS can address.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aebischer J, D’amico N, De Maleprade D, Eyer K, Lesens C, Neeser JR, Reniero R, Schmid D (2001) Products containing a dextran composition obtained from culturing Leuconostoc mesenteroides ssp. cremoris. Patent N. Us6004800

  • Anwar MA, Kralj S, Van Der Maarel MJEC, Dijkhuizen L (2008) The probiotic Lactobacillus johnsonii NCC 533 produces high-molecular-mass inulin from sucrose by using an inulosucrase enzyme. Appl Environ Microb 74:3426–3433. doi:10.1128/Aem.00377-08

    Article  CAS  Google Scholar 

  • Anwar MA, Kralj S, Piqué AV, Leemhuis H, Van Der Maarel MJEC, Dijkhuizen L (2010) Inulin and levan synthesis by probiotic Lactobacillus gasseri strains: characterization of three novel fructansucrase enzymes and their fructan products. Microbiology 156:1264–1274. doi:10.1099/Mic.0.036616-0

    Article  PubMed  CAS  Google Scholar 

  • Arendt EK, Lam R, Dal Bello F (2007) Impact of sourdough on the texture of bread. Food Microbiol 24:165–174. doi:10.1016/J.Fm.2006.07.011

    Article  PubMed  CAS  Google Scholar 

  • Argüello-Morales MA, Remaud-Simeon M, Pizzut S, Sarçabal P, Willemot R-M, Monsan P (2000) Sequence analysis of the gene encoding alternansucrase, a sucrose glucosyltransferase from Leuconostoc mesenteroides NRRL B-1355 182:81–85. doi:10.1111/J.1574-6968.2000.Tb08878.X

  • Badel S, Bernardi T, Michaud P (2011) New perspectives for Lactobacilli exopolysaccharides. Biotechnol Adv 29:54–66. doi:10.1016/J.Biotechadv.2010.08.011

    Article  PubMed  CAS  Google Scholar 

  • Bhavani AL, Nisha J (2010) Dextran—the polysaccharide with versatile uses. Int J Pharma Bio Sci 1:569

    Google Scholar 

  • Bounaix M-S, Gabriel V, Robert H, Morel S, Remaud-Siméon M, Gabriel B, Fontagné-Faucher C (2010) Characterization of glucan-producing Leuconostoc strains isolated from sourdough. Int J Food Microbiol 144:1–9. doi:10.1016/J.Ijfoodmicro.2010.05.026

    Article  PubMed  CAS  Google Scholar 

  • Broadbent JR, Mcmahon DJ, Oberg CJ, Welker DL (2001) Use of exopolysaccharide-producing cultures to improve the functionality of low fat cheese. Int Dairy J 11:433–439. doi:10.1016/S0958-6946(01)00084-X

    Article  CAS  Google Scholar 

  • Buchholz K, Seibel J (2008) Industrial carbohydrate biotransformations. Carbohyd Res 343:1966–1979. doi:10.1016/J.Carres.2008.02.007

    Article  CAS  Google Scholar 

  • Byrne D (2001) Commission Decision of 30 January 2001 on authorising the placing on the market of a dextran preparation produce by Leuconostoc mesenteroidesas a novel food ingredients in bakery products under Regulation (EC) No. 258/97 of the European Parliament and of the Concil Official Journal European Commission L44, Bruxells

  • Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res 37:D233–D238. doi:10.1093/Nar/Gkn663

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cardarelli HR, Aragon-Alegro LC, Alegro JHA, De Castro IA, Saad SMI (2008) Effect of inulin and Lactobacillus paracasei on sensory and instrumental texture properties of functional chocolate mousse. J Sci Food Agric 88:1318–1324

    Article  CAS  Google Scholar 

  • Cerning J (1990) Exocellular polysaccharides produced by lactic acid bacteria. FEMS Microbiol Lett 87:113–130. doi:10.1111/J.1574-6968.1990.Tb04883.X

    Article  CAS  Google Scholar 

  • Cerning J (1995) Production of exopolysaccharides by lactic acid bacteria and dairy propionibacteria. Lait 75:463–472

    Article  CAS  Google Scholar 

  • Chapot-Chartier MP, Monnet V, De Vuyst L (2011) Cell walls and exopolysaccharides of lactic acid bacteria. In: Ledeboer A, Hugenholtz J, Kok J, Konings W, Wouters J (eds) Thirty Years Of Research On Lactic Acid Bacteria. Media Labs, Rotterdam, The Netherlands, pp 113–132

    Google Scholar 

  • Colby SM, Russell RRB (1997) Sugar metabolism by mutans Streptococci. J Appl Microbiol 83:80s–88s. doi:10.1046/J.1365-2672.83.S1.9.X

    Article  Google Scholar 

  • Côté GL (2002) Alternan. In: Vandamme E, Debaets S, Steinbuchel A (eds) Biopolymers. Wiley-Vch, Weinheim, Germany, pp 323–350

    Google Scholar 

  • Côté GL (2009) Acceptor products of alternansucrase with gentiobiose. Production of novel oligosaccharides for food and feed and elimination of bitterness. Carbohyd Res 344:187–190. doi:10.1016/J.Carres.2008.10.017

    Article  CAS  Google Scholar 

  • Côté GL, Robyt JF (1982a) Isolation and partial characterization of an extracellular glucansucrase from Leuconostoc mesenteroides NRRL B-1355 that synthesizes an alternating (1-6), (1-3)-alpha-D-glucan. Carbohyd Res 101:57–74. doi:10.1016/S0008-6215(00)80795-8

    Article  Google Scholar 

  • Côté GL, Robyt JF (1982b) Isolation and partial characterization of an extracellular glucansucrase from Leuconostoc mesenteroides NRRL B-1355 that synthesizes an alternating (1→6), (1→3)-Α-D-glucan. Carbohyd Res 101:57–74

    Article  Google Scholar 

  • Côté GL, Skory C (2012) Cloning, expression, and characterization of an insoluble glucan-producing glucansucrase from Leuconostoc mesenteroides NRRL B-1118. Appl Microbiol Biot 93:2387–2394. doi:10.1007/S00253-011-3562-2

    Article  CAS  Google Scholar 

  • Cote GL, Leathers TD, Ahlgren JA, Wyckoff HA, Hayman GT, Biely P (1997) Chapter 8. Alternan and highly branched limit dextrans: low-viscosity polysaccharides as potential new food ingredients. In: Okai H, Mills O, Spanier AM, Tamura M (eds) Chemistry of Novel Foods. ACS Symposium Series, pp 95–109

  • Côté GL, Skory C, Unser S, Rich J (2013) The production of glucans via glucansucrases from Lactobacillus satsumensis isolated from a fermented beverage starter culture. Appl Microbiol Biot 97:7265–7273. doi:10.1007/S00253-012-4606-Y

    Article  CAS  Google Scholar 

  • De Vuyst L, Degeest B (1999) Heteropolysaccharides from lactic acid bacteria. Fems Microbiol Rev 23:153–177. doi:10.1016/S0168-6445(98)00042-4

    Article  PubMed  Google Scholar 

  • De Vuyst L, De Vin F, Vaningelgem F, Degeest B (2001) Recent developments in the biosynthesis and applications of heteropolysaccharides from lactic acid bacteria. Int Dairy J 11:687–707. doi:10.1016/S0958-6946(01)00114-5

    Article  Google Scholar 

  • Degeest B, Vaningelgem F, De Vuyst L (2001) Microbial physiology, fermentation kinetics, and process engineering of heteropolysaccharide production by lactic acid bacteria. Int Dairy J 11:747–757. doi:10.1016/S0958-6946(01)00118-2

    Article  CAS  Google Scholar 

  • Degeest B, Mozzi F, De Vuyst L (2002) Effect of medium composition and temperature and ph changes on exopolysaccharide yields and stability during Streptococcus thermophilus LY03 fermentations. Int J Food Microbiol 79:161–174. doi:10.1016/S0168-1605(02)00116-2

    Article  PubMed  CAS  Google Scholar 

  • Dertli E, Mayer MJ, Narbad A (2015) Impact of the exopolysaccharide layer on biofilms, adhesion and resistance to stress in Lactobacillus johnsonii FI9785. BMC Microbiol 15:8. doi:10.1186/S12866-015-0347-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dierksen KP, Sandine WE, Trempy JE (1997) Expression of ropy and mucoid phenotypes in Lactococcus lactis. J Dairy Sci 80:1528–1536. doi:10.3168/Jds.S0022-0302(97)76082-X

    Article  PubMed  CAS  Google Scholar 

  • Duboc P, Mollet B (2001) Applications of exopolysaccharides in the dairy industry. Int Dairy J 11:759–768. doi:10.1016/S0958-6946(01)00119-4

    Article  CAS  Google Scholar 

  • Duenas-Chasco HT, Rodriguez-Carvajal MA, Mateo PT, Franco-Rodriguez G, Espartero JL, Irastorza-Iribas A, Gil-Serrano AM (1997) Structural analysis of the exopolysaccharide produced by Pediococcus damnosus 2.6. Carbohyd Res 303:453–458

    Article  CAS  Google Scholar 

  • Duenas-Chasco MT, Rodriguez-Carvajal MA, Tejero-Mateo P, Espartero JL, Irastorza-Iribas A, Gil-Serrano AM (1998) Structural analysis of the exopolysaccharides produced by Lactobacillus spp. G-77. Carbohyd Res 307:125–133. doi:10.1016/S0008-6215(98)00034-2

    Article  CAS  Google Scholar 

  • Ernst MK, Chatterton NJ, Harrison PA, Matitschka G (1998) Characterization of fructan oligomers from species of the genus Allium L. J Plant Physiol 153:53–60

    Article  CAS  Google Scholar 

  • FDA (2013) Code of federal regulations title 21, Sec. 186.1275 Dextrans. http://www.Accessdata.Fda.Gov/Scripts/Cdrh/Cfdocs/Cfcfr/Cfrsearch.Cfm?Fr=186.1275

  • Figures WR, Edwards JR (1981) D-Glucosyltransferase of Streptococcus mutans: isolation of two forms of the enzyme that bind to insoluble dextran. Carbohyd Res 88:107–117. doi:10.1016/S0008-6215(00)84605-4

    Article  CAS  Google Scholar 

  • Flemming HC, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623–633. doi:10.1038/Nrmicro2415

    PubMed  CAS  Google Scholar 

  • Fox PF, Uniacke-Lowe T, Mcsweeney PLH, O’mahony JA (2015) Chemistry and biochemistry of fermented milk products. In: Dairy chemistry and biochemistry. Springer Int Publ. Pp 547–567. doi:10.1007/978-3-319-14892-2_13

  • Franck A (2002) Technological functionality of inulin and oligofructose. Br J Nutr 87(Suppl 2):S287–291. doi:10.1079/Bjnbjn/2002550

    Article  PubMed  CAS  Google Scholar 

  • Freitas F, Alves VD, Reis MAM (2011) Advances in bacterial exopolysaccharides: from production to biotechnological applications. Trends In Biotechnology 29:388–398. doi:10.1016/J.Tibtech.2011.03.008

    Article  PubMed  CAS  Google Scholar 

  • Galle S, Schwab C, Arendt E, Ganzle M (2010) Exopolysaccharide-forming Weissella strains as starter cultures for sorghum and wheat sourdoughs. J Agr Food Chem 58:5834–5841. doi:10.1021/Jf1002683

    Article  CAS  Google Scholar 

  • Gibson GR, Beatty ER, Wang X, Cummings JH (1995) Selective stimulation of bifidobacteria in the human colon by oligofructose and inulin gastroenterology 108:975–982. doi 10.1016/0016-5085(95)90192-2

  • Giffard PM, Simpson CL, Milward CP, Jacques NA (1991) Molecular characterization of a cluster of at least 2 glucosyltransferase genes in Streptococcus salivarius ATCC-25975. J Gen Microbiol 137:2577–2593

    Article  PubMed  CAS  Google Scholar 

  • Giffard PM, Allen DM, Milward CP, Simpson CL, Jacques NA (1993) Sequence of the Gtfk gene of Streptococcus Salivarius ATCC 25975 and evolution of the Gtf genes of oral Streptococci. J Gen Microbiol 139:1511–1522

    Article  PubMed  CAS  Google Scholar 

  • Gindreau E, Walling E, Lonvaud-Funel A (2001) Direct polymerase chain reaction detection of ropy Pediococcus damnosus strains in wine. J Appl Microbiol 90:535–542. doi:10.1046/J.1365-2672.2001.01277.X

    Article  PubMed  CAS  Google Scholar 

  • Goulas AK, Fisher DA, Grimble GK, Grandison AS, Rastall RA (2004) Synthesis of isomaltooligosaccharides and oligodextrans by the combined use of dextransucrase and dextranase enzyme. Microb Tech 35:327–338. doi:10.1016/J.Enzmictec.2004.05.008

    Article  CAS  Google Scholar 

  • Grobben GJ, Boels IC, Sikkema J, Smith MR, De Bont JAM (2000) Influence of ions on growth and production of exopolysaccharides by Lactobacillus delbrueckii subsp bulgaricus NCFB 2772. J Dairy Res 67:131–135. doi:10.1017/S002202999900391x

    Article  PubMed  CAS  Google Scholar 

  • Gruter M, Leeflang BR, Kuiper J, Kamerling JP, Vliegenthart JFG (1992) Structure of the exopolysaccharide produced by Lactococcus lactis sub cremoris H414 grown in a defined medium or skimmed-milk. Carbohyd Res 231:273–291. doi:10.1016/0008-6215(92)84025-N

    Article  CAS  Google Scholar 

  • Guggisberg D, Cuthbert-Steven J, Piccinali P, Bütikofer U, Eberhard P (2009) Rheological, microstructural and sensory characterization of low-fat and whole milk set yoghurt as influenced by inulin addition. Int Dairy J 19:107–115

    Article  CAS  Google Scholar 

  • Guven M, Yasar K, Karaca OB, Hayaloglu AA (2005) The effect of inulin as a fat replacer on the quality of set-type low-fat yogurt manufacture. Int J Dairy Technol 58:180–184

    Article  CAS  Google Scholar 

  • Hamada S, Slade HD (1980) Biology, immunology, and cariogenicity of Streptococcus mutans. Microbiol Rev 44:331–384

    PubMed  PubMed Central  CAS  Google Scholar 

  • Hammes WP, Stolz P, Gänzle M (1996) Metabolism of lactobacilli in traditional sourdoughs. Adv Food Sci 18:176–184

    CAS  Google Scholar 

  • Han YW (1990) Microbial Levan. In: Saul LN, Allen IL (Eds) Advances in applied microbiology, Vol Volume 35. Academic Press, Pp 171–194. doi:10.1016/S0065-2164(08)70244-2

  • Han YW, Clarke MA (1990) Production and characterization of microbial levan. J Agr Food Chem 38:393–396. doi:10.1021/Jf00092a011

    Article  CAS  Google Scholar 

  • He Z, Liang J, Tang Z, Ma R, Peng H, Huang Z (2015) Role of luxS gene in initial biofilm formation by Streptococcus mutans. J Mol Microbiol Biotechnol 25:60–68

    Article  PubMed  CAS  Google Scholar 

  • Hehre EJ, Sugg JY (1942) Serologically reactive polysaccharides produced through the action of bacterial enzymes: I. Dextran of Leuconostoc mesenteroides from sucrose. J Exp Med 75:339–353

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hennelly PJ, Dunne PG, O’sullivan M, O’riordan ED (2006) Textural, rheological and microstructural properties of imitation cheese containing inulin. J Food Eng 75:388–395

    Article  CAS  Google Scholar 

  • Hestrin S, Avineri-Shapiro S, Aschner M (1943) The enzymic production of levan. Biochem J 37:450–456

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hosono A, Lee JW, Ametani A, Natsume M, Hirayama M, Adachi T, Kaminogawa S (1997) Characterization of a water-soluble polysaccharide fraction with immunopotentiating activity from Bifidobacterium adolescentis M101-4. Biosci Biotech Bioch 61:312–316

    Article  CAS  Google Scholar 

  • Imeson A (2010) Food stabilisers, thickening and gelling agents. Wiley-Blackwell, Oxford

  • Jang KH, Song KB, Kim CH, Chung BH, Kang SA, Chun UH (2001) Biotechnol Lett 23:39–44

    Google Scholar 

  • Jeanes A, Haynes WC, Wilham CA, Rankin JC, Melvin EH, Austin MJ, Cluskey JE, Fisher BE, Tsuchiya HM, Rist CE (1954) Characterization and classification of dextrans from ninety-six strains of bacteria 1b. J Am Chem Soc 76:5041–5052. doi:10.1021/Ja01649a011

    Article  CAS  Google Scholar 

  • Jolly L, Vincent SF, Duboc P, Neeser J-R (2002) Exploiting exopolysaccharides from lactic acid bacteria. Antonie Van Leeuwenhoek 82:367–374. doi:10.1023/A:1020668523541

    Article  PubMed  CAS  Google Scholar 

  • Kang TH, Jung SJ, Kang S, Jang KH, Jang EK, Kim S, Kim IH, Kim CH, Rhee SK, Chun UH (2002) Preparation of levan oligosaccharides by acid hydrolysis and its application in growth of lactic acid-producing bacteria. Korean J Biotechnol Bioeng 17:137–141

    Google Scholar 

  • Kasapis S, Morris E, Gross M, Rudolph K (1994) Solution properties of levan polysaccharide from Pseudomonas syringae pv. phaseolicola, and its possible primary role as a blocker of recognition during pathogenesis. Carbohyd Polym 23:55–64. doi:10.1016/0144-8617(94)90090-6

    Article  CAS  Google Scholar 

  • Kebler LF (1921) California bees. J Am Pharm Assoc 10:939–943

    Article  CAS  Google Scholar 

  • Kim DS, Fogler HS (1999) The effects of exopolymers on cell morphology and culturability of Leuconostoc mesenteroides during starvation. Appl Microbiol Biot 52:839–844

    Article  CAS  Google Scholar 

  • Kim D, Robyt JF (1994) Production and selection of mutants of Leuconostoc mesenteroides constitutive for glucansucrases. Enzyme Microb Tech 16:659–664. doi:10.1016/0141-0229(94)90086-8

    Article  CAS  Google Scholar 

  • Kim CH, Song KB, Rhee SK (1998) Viscosity of levan produced by levansucrase from Zymomonas mobilis. Food Eng Prog 2:217–222

    Google Scholar 

  • Kim D, Robyt JF, Lee S-Y, Lee J-H, Kim Y-M (2003) Dextran molecular size and degree of branching as a function of sucrose concentration, ph, and temperature of reaction of Leuconostoc mesenteroides B-512FMCM dextransucrase. Carbohyd Res 338:1183–1189. doi:10.1016/S0008-6215(03)00148-4

    Article  CAS  Google Scholar 

  • King M, Speert DP (2002) Use of dextran and other polysaccharides to improve mucus clearance. Patentn. Wo1999001141 A1

  • Kip P, Meyer D, Jellema R (2006) Inulins improve sensoric and textural properties of low-fat yoghurts. Int Dairy J 16:1098–1103

    Article  CAS  Google Scholar 

  • Kitazawa H, Toba T, Itoh T, Kumano N, Adachi S, Yamaguchi T (1991) Antitumoral activity of slime-forming, encapsulated Lctococcus lactis subsp. cremoris isolated from Scandinavian Ropy Sour Milk, “viili”. Nihon Chikusan Gakkaiho 62:277–283. doi:10.2508/Chikusan.62.277

    Article  Google Scholar 

  • Knoshaug EP, Ahlgren JA, Trempy JE (2007) Exopolysaccharide expression in Lactococcus lactis subsp. cremoris Ropy352: evidence for novel gene organization. Appl Environ Microb 73:897–905. doi:10.1128/Aem.01945-06

    Article  CAS  Google Scholar 

  • Koca N, Metin M (2004) Textural, melting and sensory properties of low-fat fresh kashar cheeses produced by using fat replacers. Int Dairy J 14:365–373

    Article  CAS  Google Scholar 

  • Korakli M, Vogel RF (2006) Structure/function relationship of homopolysaccharide producing glycansucrases and therapeutic potential of their synthesised glycans. Appl Microbiol Biot 71:790–803. doi:10.1007/S00253-006-0469

    Article  CAS  Google Scholar 

  • Korakli M, Schwarz E, Wolf G, Hammes WP (2000) Production of mannitol by Lactobacillus sanfranciscensis. Adv Food Sci 22:1–4

    CAS  Google Scholar 

  • Korakli M, Pavlovic M, Gänzle MG, Vogel RF (2003) Exopolysaccharide and kestose production by Lactobacillus sanfranciscensis LTH2590. Appl Environ Microb 69:2073–2079. doi:10.1128/Aem.69.4.2073-2079.2003

    Article  CAS  Google Scholar 

  • Kralj S, Van Geel-Schutten GH, Rahaoui H, Leer RJ, Faber EJ, Van Der Maarel MJEC, Dijkhuizen L (2002) Molecular characterization of a novel glucosyltransferase from Lactobacillus reuteri strain 121 synthesizing a unique, highly branched glucan with alpha-(1->4) and alpha-(1->6) glucosidic bonds. Appl Environ Microb 68:4283–4291. doi:10.1128/Aem.68.9.4283-4291.2002

    Article  CAS  Google Scholar 

  • Kralj S, Van Geel-Schutten GH, Dondorff MMG, Kirsanovs S, Van Der Maarel MJEC, Dijkhuizen L (2004) Glucan synthesis in the genus Lactobacillus: isolation and characterization of glucansucrase genes, enzymes and glucan products from six different strains. Microbiol-Sgm 150:3681–3690. doi:10.1099/Mic.0.27321-0

    Article  CAS  Google Scholar 

  • Kruse HP, Kleessen B, Blaut M (1999) Effects of inulin on faecal bifidobacteria in human subjects. Brit J Nutr 82:375–382

    PubMed  CAS  Google Scholar 

  • Kumar AS, Mody K, Jha B (2007) Bacterial exopolysaccharides—a perception. J Basic Microbiol 47:103–117

    Article  PubMed  CAS  Google Scholar 

  • Lacaze G, Wick M, Cappelle S (2007) Emerging fermentation technologies: development of novel sourdoughs. Food Microbiol 24:155–160. doi:10.1016/J.Fm.2006.07.015

    Article  PubMed  CAS  Google Scholar 

  • Laws A, Gu Y, Marshall V (2001) Biosynthesis, characterisation, and design of bacterial exopolysaccharides from lactic acid bacteria. Biotechnol Adv 19:597–625. doi:10.1016/S0734-9750(01)00084-2

    Article  PubMed  CAS  Google Scholar 

  • Leathers T (2002) Dextran. In: Steinbüchel Sab A, Vandamme EH (eds) Biopolymers. Wiley Vch, Weinheim, pp 299–322

    Google Scholar 

  • Leathers TD, Hayman GT, Côté GL (1995) Rapid screening of Leuconostoc mesenteroides mutants for elevated proportions of alternan to dextran. Curr Microbiol 31:19–22. doi:10.1007/Bf00294628

    Article  CAS  Google Scholar 

  • Leathers TD, Ahlgren JA, Côté GL (1997) Alternansucrase mutants of Leuconostoc mesenteroides strain NRRL B-21138. J Ind Microbiol Biot 18:278–283. doi:10.1038/Sj.Jim.2900380

    Article  CAS  Google Scholar 

  • Leathers TD, Nunnally MS, Ahlgren JA, Côté GL (2003) Characterization of a novel modified alternan. Carbohyd Polym 54:107–113. doi:10.1016/S0144-8617(03)00157-7

    Article  CAS  Google Scholar 

  • Leathers TD, Nunnally MS, Côté GL (2010) Optimization of process conditions for enzymatic modification of alternan using dextranase from Chaetomium erraticum. Carbohyd Polym 81:732–736. doi:10.1016/J.Carbpol.2010.03.030

    Article  CAS  Google Scholar 

  • Leemhuis H, Pijning T, Dobruchowska JM, Van Leeuwen SS, Kralj S, Dijkstra BW, Dijkhuizen L (2013) Glucansucrases: three-dimensional structures, reactions, mechanism, α-glucan analysis and their implications in biotechnology and food applications. J Biotechnol 163:250–272. doi:10.1016/J.Jbiotec.2012.06.037

    Article  PubMed  CAS  Google Scholar 

  • Lemieux P, Precourt LP, Simard E (2006) Use of Lactobacillus kefiranofaciens as a probiotic and a synbiotic. Patent N. Us20140193383 A1.

  • Liu C, Lu J, Lu L, Liu Y, Wang F, Xiao M (2010) Isolation, structural characterization and immunological activity of an exopolysaccharide produced by Bacillus licheniformis 8-37-0-1. Bioresour Technol 101:5528–5533. doi:10.1016/J.Biortech.2010.01.151

    Article  PubMed  CAS  Google Scholar 

  • Looijesteijn PJ, Van Casteren WHM, Tuinier R, Doeswijk-Voragen CHL, Hugenholtz J (2000) Influence of different substrate limitations on the yield, composition and molecular mass of exopolysaccharides produced by Lactococcus lactis subsp cremoris in continuous cultures. J Appl Microbiol 89:116–122. doi:10.1046/J.1365-2672.2000.01082.X

    Article  PubMed  CAS  Google Scholar 

  • Looijesteijn PJ, Trapet L, De Vries E, Abee T, Hugenholtz J (2001) Physiological function of exopolysaccharides produced by Lactococcus lactis. Int J Food Microbiol 64:71–80. doi:10.1016/S0168-1605(00)00437-2

    Article  PubMed  CAS  Google Scholar 

  • Maeda H, Zhu X, Omura K, Suzuki S, Kitamura S (2004) Effects of an exopolysaccharide (kefiran) on lipids, blood pressure, blood glucose, and constipation. Biofactors 22:197–200

    Article  PubMed  CAS  Google Scholar 

  • Marx SP, Winkler S, Hartmeier W (2000) Metabolization of beta-(2,6)-linked fructose-oligosaccharides by different bifidobacteria. FEMS Microbiol Lett 182:163–169. doi:10.1111/J.1574-6968.2000.Tb08891.X

    PubMed  CAS  Google Scholar 

  • Masco L, Huys G, De Brandt E, Temmerman R, Swings J (2005) Culture-dependent and culture-independent qualitative analysis of probiotic products claimed to contain bifidobacteria. Int J Food Microbiol 102:221–230. doi:10.1016/J.Ijfoodmicro.2004.11.018

    Article  PubMed  CAS  Google Scholar 

  • McCurdy RD, Goff HD, Stanley DW, Stone AP (1994) Rheological properties of dextran related to food applications. Food Hydrocolloid 8:609–623. doi:10.1016/S0268-005x(09)80068-4

    Article  CAS  Google Scholar 

  • Melo IR, Pimentel MF, Lopes CE, Calazans GMT (2007) Application of fractional factorial design to levan production by Zymomonas mobilis. Braz J Microbiol 38:45–51

    Article  Google Scholar 

  • Meng X, Dobruchowska JM, Gerwig GJ, Kamerling JP, Dijkhuizen L (2015) Synthesis of oligo- and polysaccharides by Lactobacillus reuteri 121 reuteransucrase at high concentrations of sucrose. Carbohyd Res 414:85–92. doi:10.1016/J.Carres.2015.07.011

    Article  CAS  Google Scholar 

  • Micheli L, Uccelletti D, Palleschi C, Crescenzi V (1999) Isolation and characterisation of a ropy Lactobacillus strain producing the exopolysaccharide kefiran. Appl Microbiol Biot 53:69–74. doi:10.1007/S002530051616

    Article  CAS  Google Scholar 

  • Monsan P, Bozonnet S, Albenne C, Joucla G, Willemot RM, Remaud-Simeon M (2001) Homopolysaccharides from lactic acid bacteria. Int Dairy J 11:675–685. doi:10.1016/S0958-6946(01)00113-3

    Article  CAS  Google Scholar 

  • Mora-Gutierrez A (2014) Compositions for targeted anti-aging therapy. Patent N. Wo2014028585 A1

  • Naessens M, Cerdobbel A, Soetaert W, Vandamme EJ (2005) Leuconostoc dextransucrase and dextran: production, properties and applications. J Chem Technol Biotechnol 80:845–860. doi:10.1002/Jctb.1322

    Article  CAS  Google Scholar 

  • Neely WB, Nott J (1962) Dextransucrase, an induced enzyme from Leuconostoc mesenteroides. Biochemistry 1:1136–1140. doi:10.1021/Bi00912a027

    Article  PubMed  CAS  Google Scholar 

  • Novak LJ (1957) Food Preservation. Patent N. Us2790720 A, New York

  • Nwodo U, Green E, Okoh A (2012) Bacterial exopolysaccharides: functionality and prospects. Int J Mol Sci 13:14002–14015

  • Olivares-Illana V, López-Munguía A, Olvera C (2003) Molecular characterization of inulosucrase from Leuconostoc citreum: a fructosyltransferase within a glucosyltransferase. J Bacteriol 185:3606–3612. doi:10.1128/Jb.185.12.3606-3612.2003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Orla-Jensen S (1943) The lactic acid bacteria vol 3. Biologiske Skrifter Bind Ii, Kopenhagen

    Google Scholar 

  • Park JS (2007) Functional chewing gum composition for improving effectively obesity and blood fat. China Patentn. Cn1311836 C

  • Park HO, Bang YB, Joung HJ, Kim BC, Kim HR (2004) Lactobacillus for use in the treatment of eating disorders and pancreatic defects. Patent N. Ep2392340 B1

  • Paseephol T, Small DM, Sherkat F (2008) Rheology and texture of set yogurt as affected by inulin addition. J Texture Stud 39:617–634

    Article  Google Scholar 

  • Pasteur L (1861) Sur la fermentation visqueuse bulletin de la société de chimie: 30–31

  • Patel Ap JB (2013) Food and health applications of exopolysaccharides produced by lactic acid bacteria. Adv Dairy Res 1:1–7. doi:10.4172/2329-888x.1000107

    Article  Google Scholar 

  • Patel AK, Michaud P, Singhania RR, Soccol CR, Pandey A (2010) Polysaccharides from probiotics: new developments as food additives. Food Technol Biotech 48:451–463

    CAS  Google Scholar 

  • Patel S, Majumder A, Goyal A (2012) Potentials of exopolysaccharides from lactic acid bacteria. Indian J Microbiol 52:3–12. doi:10.1007/S12088-011-0148-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pham PL, Dupont I, Roy D, Lapointe G, Cerning J (2000) Production of exopolysaccharide by Lactobacillus rhamnosus R and analysis of its enzymatic degradation during prolonged fermentation. Appl Environ Microb 66:2302–2310. doi:10.1128/Aem.66.6.2302-2310.2000

    Article  CAS  Google Scholar 

  • Pidoux M (1989) The microbial flora of sugary kefir grain (the gingerbeer plant): biosynthesis of the grain from Lactobacillus hilgardii producing a polysaccharide gel. MIRCEN J Appl Microbiol Biotechnol 5:223–238. doi:10.1007/Bf01741847

    Article  Google Scholar 

  • Pidoux M, Brillouet JM, Quemener B (1988) Characterization of the polysaccharides from a Lactobacillus brevis and from sugary kefir grains. Biotechnol Lett 10:415–420. doi:10.1007/Bf01087442

  • Pidoux M, De Ruiter GA, Brooker BE, Colquhoun IJ, Morris VJ (1990) Microscopic and chemical studies of a gelling polysaccharide from Lactobacillus hilgardii. Carbohyd Polym 13:351–362. doi:10.1016/0144-8617(90)90035-Q

    Article  CAS  Google Scholar 

  • Piermaria JA, Pinotti A, Garcia MA, Abraham AG (2009) Films based on kefiran, an exopolysaccharide obtained from kefir grain: development and characterization. Food Hydrocolloid 23:684–690. doi:10.1016/J.Foodhyd.2008.05.003

    Article  CAS  Google Scholar 

  • Pleszczyńska M, Wiater A, Janczarek M, Szczodrak J (2015) (1→3)-α-d-Glucan hydrolases in dental biofilm prevention and control: a review. Int J Biol Macromol 79:761–778. doi:10.1016/J.Ijbiomac.2015.05.052

    Article  PubMed  CAS  Google Scholar 

  • Pool-Zobel BL (2005) Inulin-type fructans and reduction in colon cancer risk: review of experimental and human data. Brit J Nutr 93:S73–S90. doi:10.1079/Bjn20041349

    Article  PubMed  CAS  Google Scholar 

  • Pucci MJ, Kunka BS (1990) Novel dextran produced by Leuconostoc dextranicum. Patent N. Us4933191 A

  • Ravyts F, De Vuyst LUC, Leroy F (2011) The effect of heteropolysaccharide-producing strains of Streptococcus thermophilus on the texture and organoleptic properties of low-fat yoghurt. Int J Dairy Technol 64:536–543. doi:10.1111/J.1471-0307.2011.00714.X

    Article  CAS  Google Scholar 

  • Rodrigues KL, Caputo LRG, Carvalho JCT, Evangelista J, Schneedorf JM (2005) Antimicrobial and healing activity of kefir and kefiran extract. Int J Antimicrob Agents 25:404–408. doi:10.1016/J.Ijantimicag.2004.09.020

    Article  PubMed  CAS  Google Scholar 

  • Rohm H, Kovac A (1994) Effects of starter cultures on linear viscoelastic and physical properties of yogurt gels. J Texture Stud 25:311–329

    Article  Google Scholar 

  • Rohm H, Schmid W (1993) Influence of dry matter fortification on flow properties of yogurt. Eval Flow Curves Milchwissenschaft 48:556–560

    Google Scholar 

  • Rosell KG, Birkhed D (1974) An inulin-like fructan produced by Streptococcus mutans, strain JC2. Acta Chem Scand B 28:589

    Article  PubMed  CAS  Google Scholar 

  • Ruas-Madiedo P, de los Reyes-Gavilan CG (2005) Invited review: methods for the screening, isolation, and characterization of exopolysaccharides produced by lactic acid bacteria. J Dairy Sci 88:843–856

    Article  PubMed  CAS  Google Scholar 

  • Ruas-Madiedo PSN, de los Reyes-Gavilan CG (2009) Biosynthesis and chemical composition of exopolysaccharides produced by lactic acid bacteri in bacterial polysaccharides. In: Ullrich M (ed) Bacterial polysaccharides: current innovations and future trends. Caister Academic Press, UK

    Google Scholar 

  • Ruas-Madiedo P, Hugenholtz J, Zoon P (2002) An overview of the functionality of exopolysaccharides produced by lactic acid bacteria. Int Dairy J 12:163–171. doi:10.1016/S0958-6946(01)00160-1

    Article  CAS  Google Scholar 

  • Rühmann B, Schmid J, Sieber V (2015) Methods to identify the unexplored diversity of microbial exopolysaccharides. Front Microbiol 6:565. doi:10.3389/Fmicb.2015.00565

    PubMed  PubMed Central  Google Scholar 

  • Russo P, López P, Capozzi V, de Palencia PF, Dueñas MT, Spano G, Fiocco D (2012) Beta-Glucans improve growth, viability and colonization of probiotic microorganisms. Int J Mol Sci 13:6026

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ryan PM, Ross RP, Fitzgerald GF, Caplice NM, Stanton C (2015) Sugar-coated: exopolysaccharide producing lactic acid bacteria for food and human health applications. Food Funct 6:679–693. doi:10.1039/C4fo00529e

    Article  PubMed  CAS  Google Scholar 

  • Salazar N, Gueimonde M, Hernandez-Barranco AM, Ruas-Madiedo P, Reyes-Gavilan CGDL (2008) Exopolysaccharides produced by intestinal Bifidobacterium Strains act as fermentable substrates for human intestinal bacteria. Appl Environ Microb 74:4737–4745. doi:10.1128/Aem.00325-08

    Article  CAS  Google Scholar 

  • Salazar N, Gueimonde M, De Los Reyes-Gavilán CG, Ruas-Madiedo P (2015) Exopolysaccharides produced by Lactic acid bacteria and bifidobacteria as fermentable substrates by the intestinal microbiota. Critical Reviews in Food Science and Nutrition: 00–00 doi:10.1080/10408398.2013.770728

  • Sartor RB (2004) Therapeutic manipulation of the enteric microflora in inflammatory bowel diseases: antibiotics, probiotics, and prebiotics. Gastroenterology 126:1620–1633

    Article  PubMed  Google Scholar 

  • Schwab C, Walter J, Tannock GW, Vogel RF, Gänzle MG (2007) Sucrose utilization and impact of sucrose on glycosyltransferase expression in Lactobacillus reuteri. Syst Appl Microbiol 30:433–443. doi:10.1016/J.Syapm.2007.03.007

  • Seibel J, Buchholz K (2010) Tools in oligosaccharide synthesis current research and application. Adv Carbohydr Chem Biochem 63:101–138. doi:10.1016/S0065-2318(10)63004-1

    Article  PubMed  CAS  Google Scholar 

  • Shiroza T, Kuramitsu HK (1988) Sequence analysis of the Streptococcus mutans fructosyltransferase gene and flanking regions. J Bacteriol 170:810–816

    PubMed  PubMed Central  CAS  Google Scholar 

  • Sletmoen M, Stokke BT (2008) Higher order structure of (1,3)-β-d-glucans and its influence on their biological activities and complexation abilities. Biopolymers 89:310–321. doi:10.1002/Bip.20920

    Article  PubMed  CAS  Google Scholar 

  • Smith MR, Zahnley J, Goodman N (1994) Glucosyltransferase mutants of Leuconostoc mesenteroides NRRL B-1355. Appl Environ Microbiol 60:2723–2731

    PubMed  PubMed Central  CAS  Google Scholar 

  • Smith MR, Zahnley JC, Wong RY, Lundin RE, Ahlgren JA (1998) A mutant strain of Leuconostoc mesenteroides b-1355 producing a glucosyltransferase synthesizing alpha(1->2) glucosidic linkages. J Ind Microbiol Biot 21:37–45. doi:10.1038/Sj.Jim.2900558

    Article  CAS  Google Scholar 

  • Song KB, Bae KS, Lee YB, Lee KY, Rhee SK (2000) Characteristics of levan fructotransferase from Arthrobacter ureafaciens K2032 and difructose anhydride IV formation from levan. Enzyme Microb Tech 27:212–218

    Article  CAS  Google Scholar 

  • Stanton C, Ross P, Fitzgerald GF, Caplice N, Shanahan F (2014) Exopolysaccharide-producing bacteria, and uses thereof for protecting heart health. Patents No. Wo2014033307 A1

  • Surayot U, Wang J, Seesuriyachan P, Kuntiya A, Tabarsa M, Lee Y, Kim JK, Park W, You S (2014) Exopolysaccharides from lactic acid bacteria: structural analysis, molecular weight effect on immunomodulation. Int J Biol Macromol 68:233–240. doi:10.1016/J.Ijbiomac.2014.05.005

    Article  PubMed  CAS  Google Scholar 

  • Tárrega A, Costell E (2006) Effect of inulin addition on rheological and sensory properties of fat-free starch-based dairy desserts. Int Dairy J 16:1104–1112

    Article  CAS  Google Scholar 

  • Tieking M, Ganzle MG (2005) Exopolysaccharides from cereal-associated lactobacilli. Trends Food Sci Tech 16:79–84. doi:10.1016/J.Tifs.2004.02.015

    Article  CAS  Google Scholar 

  • Tieking M, Korakli M, Ehrmann MA, Gänzle MG, Vogel RF (2003) In situ production of exopolysaccharides during sourdough fermentation by cereal and intestinal isolates of lactic acid bacteria. Appl Environ Microb 69:945–952. doi:10.1128/Aem.69.2.945-952.2003

    Article  CAS  Google Scholar 

  • Tieking M, Kuhnl W, Ganzle MG (2005) Evidence for formation of heterooligosaccharides by Lactobacillus sanfranciscensis during growth in wheat sourdough. J Agr Food Chem 53:2456–2461. doi:10.1021/Jf048307v

    Article  CAS  Google Scholar 

  • Torino MI, Sesma F, Font de Valdez G (2000) Semi-defined media for the exopolysaccharide (EPS) production by Lactobacillus helveticus ATCC 15807 and evaluation of the components interfering with the EPS quantification. Milchwissenschaft 55:314–316

    CAS  Google Scholar 

  • Torino MI, Font De Valdez G, Mozzi F (2015) Biopolymers from lactic acid bacteria. novel applications in foods and beverages. Front Microbiol 6:834. doi:10.3389/Fmicb.2015.00834

    Article  PubMed  PubMed Central  Google Scholar 

  • Ullrich M (2009) Commercial exploitation of homo-exopolysaccharides in non-dairy food systems. In Bacterial Polysaccharides: Current Innovations and Future Trends. Caister Academic Press, Norfolk

  • Uzochukwu S, Balogh E, Loefler RT, Ngoddy PO (2001) Structural analysis by 13C-nuclear magnetic resonance spectroscopy of glucans elaborated by gum-producing bacteria isolated from palm wine. Food Chem 73:225–233. doi:10.1016/S0308-8146(00)00291-0

    Article  CAS  Google Scholar 

  • Van Geel-Schutten GH (2006) Use of a polysaccharide as bread improver. Patent No. Wo2006062410 A1

  • Van Geel-Schutten GH, Flesch F, Ten Brink B, Smith MR, Dijkhuizen L (1998) Screening and characterization of Lactobacillus strains producing large amounts of exopolysaccharides. Appl Microbiol Biot 50:697–703

    Article  Google Scholar 

  • Van Hijum SAFT, Bonting K, Van Der Maarel MJEC, Dijkhuizen L (2001) Purification of a novel fructosyltransferase from Lactobacillus reuteri strain 121 and characterization of the levan produced. FEMS Microbiol Lett 205:323–328. doi:10.1016/S0378-1097(01)00490-6

  • Van Hijum SAFT, Szalowska E, Van Der Maarel M, Dijkhuizen L (2004) Biochemical and molecular characterization of a levansucrase from Lactobacillus reuteri. Microbiol-Sgm 150:621–630. doi:10.1099/Mic.0.26671-0

    Article  CAS  Google Scholar 

  • Van Hijum SAFT, Kralj S, Ozimek LK, Dijkhuizen L, Van Geel-Schutten IGH (2006) Structure-function relationships of glucansucrase and fructansucrase enzymes from lactic acid bacteria. Microbiol Mol Biol Rev 70:157–176. doi:10.1128/Mmbr.70.1.157-176.2006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van Leeuwen SS, Kralj S, Van Geel-Schutten IH, Gerwig GJ, Dijkhuizen L, Kamerling JP (2008) Structural analysis of the α-d-glucan (EPS35-5) produced by the Lactobacillus reuteri strain 35-5 glucansucrase GTFA enzyme. Carbohyd Res 343:1251–1265. doi:10.1016/J.Carres.2008.01.044

    Article  CAS  Google Scholar 

  • Van Leeuwen SS, Kralj S, Eeuwema W, Gerwig GJ, Dijkhuizen L, Kamerling JP (2009) Structural characterization of bioengineered α-d-glucans produced by mutant glucansucrase GTF180 enzymes of Lactobacillus reuteri strain 180. Biomacromolecules 10:580–588. doi:10.1021/Bm801240r

    Article  PubMed  CAS  Google Scholar 

  • Vandamme E, Renard CEFG, Arnaut FRJ, Vekemans NMF, Tossut PPA (2002a) Process for obtaining improved structure build-up of baked products. Patent No Us 6 399 119, Weinheim

  • Vandamme EJ, De Baets S, Steinbuchel A, De Baets S (2002b) Alternan. In: Vandamme EJ, Steinbuchel A (eds) Biopolymers polysaccharides i: polysaccharides from prokaryotes, vol 5. Wiley, Weinheim, pp 323–350

  • Vijn I, Smeekens S (1999) Fructan: more than a reserve carbohydrate? Plant Physiol 120:351–359

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vincent S, Brandt M, Cavadini C, Hammes WP, Neeser JR, Waldbuesser S (2005) Levan-producing Lactobacillus strain and method of preparing human or pet products using the same. Patent No. Us 2004/0005348 A1

  • Von Wright A, Axelsson L (2012) Lactic acid bacteria: An introduction. In: Sampo Lahtinen Acossavw (Ed) Lactic Acid Bacteria: Microbiological and functional aspects, Fourth Edition. Crc Press, New York

  • Waldherr FW, Doll VM, Meißner D, Vogel RF (2010) Identification and characterization of a glucan-producing enzyme from Lactobacillus hilgardii TMW 1.828 involved in granule formation of water kefir. Food Microbiol 27:672–678. doi:10.1016/J.Fm.2010.03.013

    Article  PubMed  CAS  Google Scholar 

  • Walter J, Schwab C, Loach DM, Gänzle MG, Tannock GW (2008) Glucosyltransferase A (GtfA) and inulosucrase (Inu) of Lactobacillus reuteri TMW1.106 contribute to cell aggregation, in vitro biofilm formation, and colonization of the mouse gastrointestinal tract. Microbiology 154:72–80. doi:10.1099/Mic.0.2007/010637-0

  • Wang X, Gibson GR (1993) Effects of the in-vitro fermentation of oligofructose and inulin by bacteria growing in the human large intestine. J Appl Bacteriol 75:373–380. doi:10.1111/J.1365-2672.1993.Tb02790.X

    Article  PubMed  CAS  Google Scholar 

  • Ward HM (1892) The ginger-beer plant, and the organisms composing it: a contribution to the study of fermentation-yeasts and bacteria. Philos Trans R Soc Lond B Biol Sci 183:125–197. doi:10.1098/Rstb.1892.0006

    Article  Google Scholar 

  • Werning ML, Ibarburu I, Duenas MT, Irastorza A, Navas J, Lopez P (2006) Pediococcus parvulus GTF gene encoding the GTF glycosyltransferase and its application for specific PCR detection of beta-d-glucan-producing bacteria in foods and beverages. J Food Protect 69:161–169

    CAS  Google Scholar 

  • William MP, Joseph U (1959) Use of dextran in freeze-drying process. Patent No. Us2908614a

  • Yoo S-H, Yoon EJ, Cha J, Lee HG (2004) Antitumor activity of levan polysaccharides from selected microorganisms. Int J Biol Macromol 34:37–41. doi:10.1016/J.Ijbiomac.2004.01.002

    Article  PubMed  CAS  Google Scholar 

  • Zahnley JC, Smith MR (1995) Insoluble glucan formation by Leuconostoc mesenteroides B-1355. Appl Environ Microb 61:1120–1123

    CAS  Google Scholar 

  • Zannini E, Mauch A, Galle S, Gänzle M, Coffey A, Arendt EK, Taylor JP, Waters DM (2013) Barley malt wort fermentation by exopolysaccharide-forming Weissella cibaria MG1 for the production of a novel beverage. J Appl Microbiol 115(6):1379–1387. doi:10.1111/Jam.12329

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Li X, Xu X, Zeng F (2005) Correlation between antitumor activity, molecular weight, and conformation of lentinan. Carbohyd Res 340:1515–1521. doi:10.1016/J.Carres.2005.02.032

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Funding for this research was provided under the Irish National Development Plan, through the Food Institutional Research Measure, administered by the Department of Agriculture, Fisheries and Food, Ireland. This publication reflects only author’s views, and the community is not liable for any use that may be made of the information contained in this publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elke K. Arendt.

Ethics declarations

Ethical statement

This article complies with ethical standards and does not contain any studies with human participants performed by any of the authors.

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zannini, E., Waters, D.M., Coffey, A. et al. Production, properties, and industrial food application of lactic acid bacteria-derived exopolysaccharides. Appl Microbiol Biotechnol 100, 1121–1135 (2016). https://doi.org/10.1007/s00253-015-7172-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-7172-2

Keywords

Navigation