Skip to main content
Log in

Production, purification and structural characterization of an exopolysaccharide produced by a probiotic Lactobacillus plantarum MTCC 9510

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Exopolysaccharides (EPS) from lactic acid bacteria contribute to specific rheology and texture of fermented milk products and finds applications even in non-dairy foods and in therapeutics. Box-Behnken model of response surface methodology (RSM) was employed to formulate the production medium for exopolysaccharide (EPS). FT-IR spectral analysis of the purified EPS from Lactobacillus plantarum MTCC 9510 revealed prominent characteristic groups corresponding to polyhydric alcohols. The degradation temperature (Td) of the polysaccharide was found to be 260°C with the help of thermo gravimetric analysis (TGA). Structure elucidation of the EPS showed that it consists of a trisaccharide repeating unit of α-d-glucose, β-d-glucose and α-d-mannose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aslim B, Yüksekdağ ZN, Beyatli Y, Mercan N (2005) Exopolysaccharide production by Lactobacillus delbruckii subsp. bulgaricus and Streptococcus thermophilus strains under different growth conditions. World J Microbiol Biotechnol 21:673–677

    Article  CAS  Google Scholar 

  • Aswathy RG, Ismail B, John RP, Nampoothiri KM (2008) Evaluation of the probiotic characteristics of newly isolated Lactic acid bacteria. Appl Biochem Biotechnol 151:244–255

    Article  CAS  PubMed  Google Scholar 

  • Barker SA, Bourne EJ, Stacey M, Whiffen DH (1954) Infrared spectra of carbohydrates. Part I. Some derivatives of d-glucopyranose. J Chem Soc 75:171–176

    Google Scholar 

  • Braissant O, Decho AW, Przekop KM, Gallagher KL, Glunk C, Dupraz C, Visscher PT (2009) Characteristics and turnover of exopolymeric substances in a hypersaline microbial mat. FEMS Microbiol Ecol 67:293–307

    Article  CAS  PubMed  Google Scholar 

  • Černá M, Barros AS, Nunes A, Rocha SM, Delgadillo I, Čopíková J, Coimbra MA (2003) Use of FT-IR spectroscopy as a tool for the analysis of polysaccharide food additives. Carbohydr Polym 51:383–389

    Article  Google Scholar 

  • Chaubey M, Kapoor VP (2001) Carbohydr Res 332:439–444

    Article  CAS  PubMed  Google Scholar 

  • Chi Z, Su CD, Lu WD (2007) A new exopolysaccharide produced by marine Cyanothece sp. 113. Bioresour Technol 98:1329–1332

    Article  CAS  PubMed  Google Scholar 

  • Dabour N, LaPointe G (2005) Identification and molecular characterization of the chromosomal exopolysaccharide biosynthesis gene cluster from Lactococcus lactis subsp. cremoris SMQ-461. Appl Environ Microbiol 71:7414–7425

    Article  CAS  PubMed  Google Scholar 

  • Dubois M, Gilles K, Hamilton J, Rebers P, Smith F (1956) Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Filippov MP (1992) Practical infrared spectroscopy of pectic substances. Food Hydrocolloids 6:115–142

    Article  CAS  Google Scholar 

  • German B, Schiffrin EJ, Reneiro R, Mollet B, Pfeifer A, Neeser J (1999) The development of functional foods: lessons from the gut. Trends Biotechnol 17:492–499

    Article  CAS  PubMed  Google Scholar 

  • Gibson GR, Roberfroid MB (1995) Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr 124:1401–1412

    Google Scholar 

  • Gorin P (1981) Carbon-13 nuclear magnetic resonance spectroscopy of polysaccharides. In: Tipson R, Horton D (eds) Advance in carbohydrate chemistry and biochemistry. Academic Press, New York, pp 13–104

    Google Scholar 

  • Gutnick DL, Bach H (2000) Engineering bacterial biopolymers for the biosorption of heavy metals; new products and novel formulations. Appl Microbiol Biotechnol 54:451–460

    Article  CAS  PubMed  Google Scholar 

  • Hallack LF, Passos DS, Mattos KA, Agrellos OA, Jones C, Mendonça-Previato L, Previato JO, Todeschini AR (2009) Structural elucidation of the repeat unit in highly branched acidic exopolysaccharides produced by nitrogen fixing Burkholderia. Glycobiology Advance doi:10.1093/glycob/cwp181

  • Kachlany SC, Levery SB, Kim JS, Reuhs BL, Lion LW, Ghiorse WC (2001) Structure and carbohydrate analysis of the exopolysaccharide capsule of Pseudomonas putida G7. Environ Microbiol 3:774–784

    Article  CAS  PubMed  Google Scholar 

  • Kreisman LSC, Friedman JH, Neaga A, Cobb BA (2007) Structure and function relations with a T-cell-activating polysaccharide antigen using circular dichroism. Glycobiology 17:46–55

    Article  CAS  PubMed  Google Scholar 

  • Lin E-S, Chen Y-H (2007) Factors affecting mycelial biomass and exopolysaccharide production in submerged cultivation of Antrodia cinnamomea using complex media. Bioresour Technol 98:2511–2517

    Article  CAS  PubMed  Google Scholar 

  • Looijesteijn PJ, Hugenholtz J (1999) Uncoupling of growth and exopolysaccharide production by Lactobacillus lactis subsp. cremoris NIZO B40 and optimization of its synthesis. J Biosci Bioeng 88:78–182

    Article  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Maeda H, Zhu X, Suzuki S, Suzuki K, Kitamura S (2004) Structural characterization and biological activities of an exopolysaccharide Kefiran produced by Lactobacillus kefiranofaciens WT-2BT. J Agric Food Chem 52:5533–5538

    Article  CAS  PubMed  Google Scholar 

  • Majumdar I, D’Souza F, Bhosle NB (1999) Microbial exopolysaccharides, effect on corrosion and partial chemical characterization. J Indian Instit Sci 79:539–550

    CAS  Google Scholar 

  • Mathlouthi M, Koenig J (1986) Vibrational spectra of carbohydrate. Adv Carbohydr Chem Biochem 44:7–89

    Article  CAS  PubMed  Google Scholar 

  • Sánchez J, Martínez B, Guilleń R, Jimeńez-Díaz R, Rodríguez A (2006) Culture conditions determine the balance between two different exopolysaccharides produced by Lactobacillus pentosus LPS26. Appl Environ Microbiol 72:7495–7502

    Article  PubMed  Google Scholar 

  • Surrenjav U, Zhang L, Xu XJ, Zhang XF, Zeng FB (2006) Effects of molecular structure on antitumor activities of (1 → 3)- beta-d-glucans from different Lentinus Edodes. Carbohydr Polym 63:97–104

    Article  Google Scholar 

  • Tao YZ, Zhang LN, Cheung PCK (2006) Physicochemical properties and antitumor activities of water-soluble native and sulfated hyperbranched mushroom polysaccharides. Carbohydr Res 341:2261–2269

    Article  CAS  PubMed  Google Scholar 

  • Usui T, Yamaoka N, Mastuda K, Tuzimura K, Sugiyama H, Seto S (1973) 13C nuclear magnetic resonance spectra of glucobiose, glucotriose, and glucans. J Chem Soc Perkin Trans I 1:2425–2432

    Article  Google Scholar 

  • Vanhaverbeke C, Bosso C, Colin-Morel P, Gey C, Gamar-Nourani L, Blondeau K, Simonet J-M, Heyraud A (1998) Structure of an extracellular polysaccharide produced by Lactobacillus rhamnosus strain C83. Carbohydr Res 314:211–220

    Article  CAS  PubMed  Google Scholar 

  • Vijayendra SVN, Palanivel G, Mahadevamma S, Tharanathan RN (2009) Physico-chemical characterization of a new heteropolysaccharide produced by a native isolate of heterofermentative Lactobacillus sp. CFR-2182. Arch Microbiol 191:303–310

    Article  CAS  PubMed  Google Scholar 

  • Vincent SJ, Faber EJ, Neeser JR, Stingele F, Kamerling JP (2001) Structure and properties of the exopolysaccharide produced by Streptococcus macedonicus Sc136. Glycobiology 11:131–139

    Article  CAS  PubMed  Google Scholar 

  • Wang YY, Khoo KH, Chen ST, Lin CC, Wong CH, Lin CH (2002) Studies on immuno-modulating and antitumor activities of Ganoderma lucidum (Reishi) polysaccharides: functional and proteomic analyses of a fucose-containing glycoprotein fraction responsible for the activities. Bioorg Med Chem 10(4):1057–1062

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The SRF fellowship from the Council of Scientific and Industrial Research (CSIR), New Delhi to BI is greatly acknowledged. The Programme was supported by DBT, New Delhi. The authors would like to acknowledge Mr. Sankar Sasidharan, Materials and Minerals Division, NIIST, Trivandrum for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kesavan Madhavan Nampoothiri.

Additional information

Communicated by Ercko Stackebrandt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ismail, B., Nampoothiri, K.M. Production, purification and structural characterization of an exopolysaccharide produced by a probiotic Lactobacillus plantarum MTCC 9510. Arch Microbiol 192, 1049–1057 (2010). https://doi.org/10.1007/s00203-010-0636-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-010-0636-y

Keywords

Navigation