Skip to main content
Log in

Application of organosilicate matrix based on methyltriethoxysilane, PVA and bacteria Paracoccus yeei to create a highly sensitive BOD

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

We have studied immobilization of Paracoccus yeei VKM B-3302 cells in an organosilica sol–gel matrix consisting of tetraethoxysilane, methyltriethoxysilane and polyvinyl alcohol as a structure-modifying agent. Optical microscopy showed that higher amounts of methyltriethoxysilane make the solid material structure softer. In addition, formation of structures, probably, with bacterial cells inside was spotted. We have analyzed the catalytic power of the immobilized bacteria and discovered that the material’s catalytic potential is the highest at 50% of methyltriethoxysilane. Therefore, this seems to be the best ratio of precursors in a material for bacteria to become effectively encapsulated. Analysis of the material structure by low-temperature nitrogen absorption and scanning electron microscopy revealed that in the given conditions the material got crack-like mesopores and spherical particles of about 25 µm in diameter with immobilized bacterial cells on their surface. The study found that the fabricated organosilica material can effectively protect bacterial cells against UV radiation, pH change, high salinity and high heavy metal ion concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and materials

The authors confirm that the data supporting the findings of this study are available within the article.

References

  • Arlyapov VA, Kharkova AS, Kurbanaliyeva SK, Kuznetsova LS, Machulin AV, Tarasov SE, Melnikov PV, Ponamoreva ON, Alferov VA, Reshetilov AN (2021) Use of biocompatible redox-active polymers based on carbon nanotubes and modified organic matrices for development of a highly sensitive BOD biosensor. Enzyme Microbial Technol 143:109706

    Article  CAS  Google Scholar 

  • Arlyapov VA, Yudina NY, Asulyan LD, Alferov SV, Alferov VA, Reshetilov AN (2013) BOD biosensor based on the yeast Debaryomyces hansenii immobilized in poly(vinyl alcohol) modified by N-vinylpyrrolidone. Enzyme Microbial Technol 53:257–262

    Article  CAS  Google Scholar 

  • Arlyapov VA, Yudina NY, Asulyan LD, Kamanina OA, Alferov SV, Shumsky AN, Machulin AV, Alferov VA, Reshetilov AN (2020) Registration of BOD using Paracoccus yeei bacteria isolated from activated sludge. 3 Biotech 10(5):207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Babiarczuk B, Lewandowski D, Szczurek A et al (2020) Novel approach of silica-PVA hybrid aerogel synthesis by simultaneous sol-gel process and phase separation. J Supercrit Fluids 166:104997

    Article  CAS  Google Scholar 

  • Barrett EP, Jouner LC, Halenda PP (1951) The determination of pore volume and area distributions in porous substances. I. Computations from Nitrogen isotherms. Vol Area Distrib Porous Substances 73(1948):373–380. https://doi.org/10.1021/ja01145a126

  • Bernards TNM, van Bommel MJ, Boonstra AH (1991) Hydrolysis-condensation processes of the tetra-alkoxysilanes TPOS, TEOS and TMOS in some alcoholic solvents. J Non-Cryst Solids 134:1–13. https://doi.org/10.1016/0022-3093(91)90005-Q

    Article  CAS  Google Scholar 

  • Blondeau M, Coradin T (2012) Living materials from sol-gel chemistry: current challenges and perspectives. J Mater Chem 22:22335–22343

    Article  CAS  Google Scholar 

  • Catalano P, Bourguignon NS, Alvarez GS et al (2012) Sol-gel immobilized ovarian follicles: Collaboration between two different cell types in hormone production and secretion. J Mater Chem 22:11681–11684

    Article  CAS  Google Scholar 

  • Chen S, Wang T, Yao Y, Wei A (2018) Facile synthesis of novel fibrous silica@apatite@Au composites with superior photo-catalytic activity. Mater Des 147:106–113

    Article  CAS  Google Scholar 

  • Chua Y, Lin CXC, Kleitz F, Smart S (2015) Mesoporous organosilica membranes: effects of pore geometry and calcination conditions on the membrane distillation performance for desalination. Desalination 370:53–62

    Article  CAS  Google Scholar 

  • Depagne C, Roux C, Coradin T (2011) How to design cell-based biosensors using the sol-gel process. Anal Bioanal Chem 400:965–976

    Article  CAS  PubMed  Google Scholar 

  • Eş I, Vieira JDG, Amaral AC (2015) Principles, techniques, and applications of biocatalyst immobilization for industrial application. Appl Microbiol Biotechnol 99(5):2065–2082

    Article  PubMed  Google Scholar 

  • Hong D, Park M, Yang SH, Lee J, Kim YG, Choi IS (2013) Artificial spores Cytoprotective nanoencapsulation of living cells. Trends Biotechnol 31(8):442–447. https://doi.org/10.1002/smll.201202174

    Article  CAS  PubMed  Google Scholar 

  • IUPAC (1972) IUPAC manual of symbols and terminology. Pure Appl Chem 31:577

    Article  Google Scholar 

  • Irani M, Keshtkar A, Moosavian M (2012) Removal of cadmium from aqueous solution using mesoporous PVA/TEOS/APTES composite nanofiber prepared by sol-gel/electrospinning. Chem Eng J 200–202:192–201

    Article  Google Scholar 

  • Ismail WNW (2016) Sol–gel technology for innovative fabric finishing—a review. J Sol-Gel Sci Technol 78:698–707

    Article  CAS  Google Scholar 

  • Jouanneau S, Recoules L, Durand MJ, Boukabache A, Picot V, Primault Y, Thouand G (2014) Methods for assessing biochemical oxygen demand (BOD): a review. Water Res 49:62–82

    Article  CAS  PubMed  Google Scholar 

  • Kamanin SS, Arlyapov VA, Rogova TV, Reshetilov AN (2014) Modified printed electrodes based on hybrid organosilicon sol-gel matrix, immobilized glucose oxidase. Appl Biochem Microbiol 50(9):47–53

    Article  Google Scholar 

  • Kamanina OA, Fedoseeva DG, Rogova TV, Ponamoreva ON, Blokhin IV, Machulin AV, Alferov VA (2014) Synthesis of organosilicon sol-gel matrices and preparation of heterogeneous biocatalysts based on them. Russian J Appl Chem 87(6):761–766. https://doi.org/10.1134/S1070427214060160

    Article  CAS  Google Scholar 

  • Kamanina OA, Lavrova DG, Arlyapov VA, Alferov VA, Ponamoreva ON (2016) Silica sol-gel encapsulated methylotrophic yeast as filling of biofilters for the removal of methanol from industrial wastewater. Enzyme Microbial Technol 92:94–98

    Article  CAS  Google Scholar 

  • Kharkova AS, Arlyapov VA, Turovskaya AD, Avtukh AN, Starodumova IP, Reshetilov AN (2019) Mediator BOD biosensor based on cells of microorganisms isolated from activated sludge. Appl Biochem Microbiol 55(2):189–197

    Article  CAS  Google Scholar 

  • Lin L, Xiao LL, Huang S et al (2006) Novel BOD optical fiber biosensor based on co-immobilized microorganisms in ormosils matrix. Biosens Bioelectron 21:1703–1709

    Article  CAS  PubMed  Google Scholar 

  • Mehrotra P (2016) Biosensors and their applications—a review. J Oral Biol Craniofacial Res 6:153–159

    Article  Google Scholar 

  • Meunier CF, Rooke JC, Leonard A et al (2010) Living hybrid materials capable of energy conversion and CO2 assimilation. Chem Commun 46:3843–3859

    Article  CAS  Google Scholar 

  • Pereira APV, Vasconcelos WL, Oréfice RL (2000) Novel multicomponent silicate–poly(vinyl alcohol) hybrids with controlled reactivity. J Non Cryst Solids 273(1):180–185

    Article  CAS  Google Scholar 

  • Ponamoreva ON, Kamanina OA, Alferov VA, Machulin A, V, Rogova T. V, Arlyapov V. A., Ivanova E. P. (2015) Yeast-based self-organized hybrid bio-silica sol–gels for the design of biosensors. Biosens Bioelectron 67:321–326

    Article  CAS  PubMed  Google Scholar 

  • Putz AM, Wang K, Len A, Plocek J, Bezdicka P, Kopitsa GP, Almásy L (2017) Mesoporous silica obtained with methyltriethoxysilane as co-precursor in alkaline medium. Appl Surf Sci 424:275–281

    Article  CAS  Google Scholar 

  • Sing KSW, Everett DH, Haul AW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 57(4):603–619. https://doi.org/10.1351/pac198557040603

    Article  CAS  Google Scholar 

  • Sukiasyan A, Kirakosyan A, Pirumyan G (2018) Evaluation of the level of load of heavy metals in the system water–soil. Plant Biogeochem Coefficient 4:53–60

    Google Scholar 

  • Szczesna-Antczak M, Antczak T, Bielecki S (2004) Stability of extracellular proteinase productivity by Bacillus subtilis cells immobilized in PVA-cryogel. Enzyme Microbial Technol 34(2):168–176

    Article  CAS  Google Scholar 

  • Vollet DR, Nunes LM, Donatti DA, Ibañez RA, Maceti H (2008) Structural characteristics of silica sonogels prepared with different proportions of TEOS and TMOS. J Non-Cryst Solid 354(14):1467–1474. https://doi.org/10.1016/j.jnoncrysol.2007.08.047

    Article  CAS  Google Scholar 

  • Wang Y, Wang D, Wang J, Wang L (2020) Preparation and characterization of a sol-gel derived silica/PVA-Py hybrid anion exchange membranes for alkaline fuel cell application. J Electroanal Chem 873:114342

    Article  CAS  Google Scholar 

  • Weiser D, Nagy F, Bánóczi G et al (2017) Immobilization engineering – How to design advanced sol–gel systems for biocatalysis? Green Chem 19:3927–3937

    Article  CAS  Google Scholar 

  • Yang S, Jia WZ, Qian QY et al (2009) Simple approach for efficient encapsulation of enzyme in silica matrix with retained bioactivity. Anal Chem 81:3478–3484

    Article  CAS  PubMed  Google Scholar 

  • Zheng K, Boccaccini AR (2017) Sol-gel processing of bioactive glass nanoparticles: a review. Adv Colloid Interface Sci 249:363–373

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The reported study was funded by a grant of the President of the Russian Federation for the State Support of Young Russian PhD Scientists, Agreement No. MK-1349.2020.3. and   by RFBR project number No. 20-33-70078.

Author information

Authors and Affiliations

Authors

Contributions

KO, AV, PO conceptualization; KO, LD, RP, PE conducted the experiments; KO, AV, PO data analysis.

Corresponding author

Correspondence to Olga Kamanina.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamanina, O., Arlyapov, V., Rybochkin, P. et al. Application of organosilicate matrix based on methyltriethoxysilane, PVA and bacteria Paracoccus yeei to create a highly sensitive BOD. 3 Biotech 11, 331 (2021). https://doi.org/10.1007/s13205-021-02863-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-021-02863-z

Keywords

Navigation