Skip to main content
Log in

Sol–gel technology for innovative fabric finishing—A Review

  • Review Paper: Sol-gel and hybrid materials with surface modification for applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Sol–gel technology continues to interest researchers from both industries and governmental institutions in many parts of the world decades after its discovery. It offers efficient and high-purity production of nanopowders, fibres, solid structures and thin-film coatings. Possible applications of sol–gel technology can be found in a wide range of sectors, such as pharmacy, medicine, construction, aerospace, transport, food industry, optics, agriculture, semiconductor devices, catalysis and biotechnology. Also in the textile sector, sol–gel technology is expected to lead the production of fabrics with completely novel properties or the combination of various functions in one fabric. The sol–gel reaction is easy to perform and does not require special conditions and high temperatures. The reaction consists of a series of simple hydrolysis and condensation reactions. This paper presents an overview of sol–gel technology and discusses the fabric functions that can be achieved by the technology.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Tomasino C (1992) Chemistry and technology of fabric: preparation and finishing. North Carolina State University, North Carolina

    Google Scholar 

  2. Schindler WD, Hauser PJ (2004) Chemical finishing of textiles. Woodhead Publishing, Cambridge

    Book  Google Scholar 

  3. Mahltig B, Böttcher H (2003) J Sol–Gel Sci Technol 27:43–52

    Article  Google Scholar 

  4. Xue CH, Ji ST, Chen HZ, Wang M (2008) Sci Technol Adv Mater 9:1–5

    Google Scholar 

  5. Mahltig B, Fiedler D, Böttcher H (2004) J Sol–Gel Sci Technol 32:219–222

    Article  Google Scholar 

  6. Xing YJ, Ding X (2004) J Appl Polym Sci 103:3113–3119

    Article  Google Scholar 

  7. Xing YJ, Yang XJ, Dai JJ (2007) J Sol–Gel Sci Technol 43:187–192

    Article  Google Scholar 

  8. Abidi N, Hequet E, Tarimala S, Dai LL (2007) J Appl Polym Sci 104:111–117

    Article  Google Scholar 

  9. Brancatelli G, Colleoni C, Massafra MR, Rosace G (2011) Polym Degrad Stabil 96:483–490

    Article  Google Scholar 

  10. Yaman N (2009) Fibers Polym 10:413–418

    Article  Google Scholar 

  11. Hribernik S, Smole MS, Kleinsche KS, Bele M, Jamink J, Gaberscek M (2007) Polym Degrad Stabil 92:1957–1965

    Article  Google Scholar 

  12. Cireli AC, Onar N, Ebeoglugil MF, Kayatekin I, Kutlu N, Culha O (2007) J Appl Polym Sci 105:3747–3756

    Article  Google Scholar 

  13. Kathirvelu S, D’Souza L, Dhurai B (2009) Indian J Fiber Text Res 34:267–273

    Google Scholar 

  14. Keshmiri M, Troczynski T, Mohseni M (2006) J Hazard Mater 128:130–137

    Article  Google Scholar 

  15. Brinker JC, Scherer GW (1990) Sol–gel science: the physics and chemistry of sol–gel processing. Academic Press, San Diego

    Google Scholar 

  16. Nalwa HS (2003) Handbook of organic-inorganic hybrid materials and nanocomposites. American Scientific Publisher, California

    Google Scholar 

  17. Mahltig B, Textor T (2006) J Sol–Gel Sci Technol 39:111–118

    Article  Google Scholar 

  18. He J, Nebioglu A, Zong Z, Soucek MD, Wollyung KM, Wesdemiotis C (2005) Macromol Chem Phys 206:732–743

    Article  Google Scholar 

  19. Socrates G (2001) Infrared and Raman characteristic group frequencies. Wiley, New York

    Google Scholar 

  20. Chen LF, Cai ZH, Zhang L, Lan L, Chen XJ, Zeng J (2007) J Mater Sci 42:1004–1009

    Article  Google Scholar 

  21. He J, Zhou L, Soucek MD, Wollyung KM, Wesdemiotis C (2007) J Appl Polym Sci 105:2376–2386

    Article  Google Scholar 

  22. Azizinejad F, Talu M, Abdouss M, Shabani M (2005) Iran Polym J 14:33–38

    Google Scholar 

  23. Costamagna V, Wunderlin D, Larranaga M, Mondragon I, Strumia M (2006) J Appl Polym Sci 102:2254–2263

    Article  Google Scholar 

  24. Caruso RA, Antonietti M (2001) Chem Mater 13:3272–3282

    Article  Google Scholar 

  25. Lapidot N, Gans O, Biagini F, Sosonkin L, Rottman C (2003) J Sol–Gel Sci Technol 26:67–72

    Article  Google Scholar 

  26. Parthasarathi V (2008) Nanotechnology adds value to textile finishing. Indian Text J. Retrieved from http://www.indiantextilejournal.com/articles

  27. Yang H, Zhu S, Pan N (2004) J Appl Polym Sci 92:3201–3210

    Article  Google Scholar 

  28. Alebeid OK, Zhao T (2015) Text Res J 85:449–457

    Article  Google Scholar 

  29. Wei Q (2009) Surface modification of textiles. CRC Press, New York

    Book  Google Scholar 

  30. Chou TP, Cao G (2003) J Sol–Gel Sci Technol 27:31–41

    Article  Google Scholar 

  31. Vihodceva S, Kukle S (2013) Mater Sci Eng 49:1–4

    Google Scholar 

  32. Papaspyrides CD, Pavlidou S, Vouyiouka SN (2009) J Mater Des Appl 223:91–102

    Google Scholar 

  33. Ramachandran T, Rajendrakumar K, Rajendrdan R (2004) J Inst Eng 84:42–47

    Google Scholar 

  34. Tarimala S, Kothari N, Abidi N, Hequet E, Fralick J, Dai LL (2006) J Appl Polym Sci 101:2938–2943

    Article  Google Scholar 

  35. Prabhu S, Poulose EK (2012) Int Nano Lett 32:2–10

    Google Scholar 

  36. Berendjchi A, Khajavi R, Yazdanshenas ME (2011) Nanoscale Res Lett 6:594–601

    Article  Google Scholar 

  37. Mathiazhagan A, Joseph R (2011) Int J Chem Eng Appl 2:225–237

    Google Scholar 

  38. Schartel B (2010) Mater 3:4710–4745

    Article  Google Scholar 

  39. Zhang Q, Zhang W, Huang J, Lai Y, Xing T, Chen G, Jin W, Liu H, Sun B (2015) Mater Des 85:796–799

    Google Scholar 

  40. Brassad J-D, Sarkar DK, Perron J (2012) Appl Sci 2:453–464

    Article  Google Scholar 

  41. Ghosh SS, Das S, Sil A, Biswas PK (2012) J Sol–Gel Sci Technol 64:534–542

    Article  Google Scholar 

  42. Taurino R, Fabbri E, Pospiech D, Synytska A, Messori M (2014) Prog Org Coat 77:1635–1641

    Article  Google Scholar 

  43. Il’darkhanova FI, Mironova GA, Bogoslovsky KG, Men’shikov VV, Bykov ED (2012) Protect Metals Phys Chem Surf 48:796–802

    Article  Google Scholar 

  44. Rao AV, Latthe SS, Nadargi DY, Hirashima H, Ganesan V (2009) J Colloid Interface Sci 332:484–490

    Article  Google Scholar 

  45. Satoh K, Nakazumi H, Morita M (2004) Text Res J 74:1079–1084

    Article  Google Scholar 

  46. Textor T, Bahners T, Schollmeyer E (1999) Melliand Textilber Int 80:847–848

    Google Scholar 

  47. Textor T, Bahners T, Schollmeyer E (2001) Prog Colloid Polym Sci 117:76–79

    Article  Google Scholar 

  48. Bae GY, Min BG, Jeong YG, Lee SC, Jang JH, Koo GH (2009) J Colloid Interface Sci 337:170–175

    Article  Google Scholar 

  49. Hsieh CT, Wu FL, Yang SY (2008) Surf Coat Technol 202:6103–6108

    Article  Google Scholar 

  50. Jin C, Jiang Y, Niu T, Huang J (2012) J Mater Chem 22:12562–12567

    Article  Google Scholar 

  51. Klemm D, Heublein B, Fink H-P, Bohn A (2005) Angew Chem Int Ed 44:3358–3393

    Article  Google Scholar 

  52. Huang J, Gu Y (2011) Curr Opin Colloid Interface Sci 16:470–481

    Article  Google Scholar 

  53. Huang J, Kunitake T (2003) J Am Chem Soc 125:11834–11835

    Article  Google Scholar 

  54. Kathirvelu S, D’Souza L, Dhurai B (2008) Indian J Sci Technol 1:1–10

    Google Scholar 

  55. Costa AL, Ortelli S, Blosi M, Albonetti S, Vaccari A, Dondi M (2013) Chem Eng J 225:880–886

    Article  Google Scholar 

  56. Ibhadon AO, Fitzpatrick P (2013) Catalysts 3:189–218

    Article  Google Scholar 

  57. Daoud WA, Xin JH (2004) J Sol–Gel Sci Technol 29:25–29

    Article  Google Scholar 

  58. Kaihong Q, John HX, Walid AD (2007) Int J Appl Ceram Technol 4:554–563

    Article  Google Scholar 

  59. Gupta KK, Jassal M, Agrawal AK (2008) Indian J Fibre Text Res 33:443–450

    Google Scholar 

  60. Kumar BS (2015) J Polym Text Eng 2:1–5

    Google Scholar 

  61. Wang W, Serp P, Kalck P, Faria JL (2005) Appl Catal B 56:305–312

    Article  Google Scholar 

  62. Elsayed AA, Allam OG, Mohamed SHS, Murad H (2015) Am J Nano Res Appl 3:46–52

    Google Scholar 

  63. Ortelli S, Costa AL, Dondi M (2015) Mater 8:7988–7996

    Article  Google Scholar 

  64. Ortelli S, Blosi M, Albonetti S, Vaccari A, Dondi M, Costa AL (2014) J Photochem Photobiol A Chem 276:58–64

    Article  Google Scholar 

  65. Hanemann T, Szabó DV (2010) Mater 3:3468–3517

    Article  Google Scholar 

  66. Dhineshbabu NR, Arunmetha S, Manivasakan P, Karunakaran G, Rajendran V (2016) J Ind Text 45:674–692

    Article  Google Scholar 

  67. El-Shafei A, ElShemy M, Abou-Okeil A (2015) Carbohydr Polym 118:83–90

    Article  Google Scholar 

Download references

Acknowledgments

The support from Universiti Malaysia Pahang is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wan Norfazilah Wan Ismail.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ismail, W.N.W. Sol–gel technology for innovative fabric finishing—A Review. J Sol-Gel Sci Technol 78, 698–707 (2016). https://doi.org/10.1007/s10971-016-4027-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-016-4027-y

Keywords

Navigation