Skip to main content
Log in

Downregulating of hemB via synthetic antisense RNAs for improving 5-aminolevulinic acid production in Escherichia coli

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Aminolevulinic acid (ALA), a type of natural non-protein amino acid, is a key precursor for the biosynthesis of heme, and it has been broadly applied in medicine, agriculture. Several strategies have been applied to enhance ALA synthesis in bacteria. In the present study, we employed synthetic antisense RNAs (asRNAs) of hemB (encodes ALA dehydratase) to weaken metabolic flux of ALA to porphobilinogen (PBG), and investigated their effect on ALA accumulation. For this purpose, we designed and constructed vectors pET28a-hemA-asRNA and pRSFDuet-hemA-asRNA to simultaneously express 5-ALA synthase (ALAS, encoded by hemA) and PTasRNAs (2 inverted repeat DNA sequences sandwiched with the antisense sequence of hemB), selecting the region ranging from − 57 nt upstream to + 139 nt downstream of the start codon of hemB as a target. The qRT-PCR analysis showed that the mRNA levels of hemB were decreased above 50% of the control levels, suggesting that the anti-hemB asRNA was functioning appropriately. ALA accumulation in the hemB weakened strains were 17.6% higher than that obtained using the control strains while accumulating less PBG. These results indicated that asRNAs can be used as a tool for regulating ALA accumulation in E. coli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Choi HP, Hong JW, Rhee KH, Sung HC (2004) Cloning, expression, and characterization of 5-aminolevulinic acid synthase from Rhodopseudomonas palustris KUGB306. FEMS Microbiol Lett 236:175–181

    Article  CAS  Google Scholar 

  • Ding W, Weng H, Du G, Chen J, Kang ZJ (2017) 5-Aminolevulinic acid production from inexpensive glucose by engineering the C4 pathway in Escherichia coli. Ind Microbiol Biotechnol 44(8):1127–1135

    Article  CAS  Google Scholar 

  • Hamza I, Dailey HA (2012) One ring to rule them all: trafficking of heme and heme synthesis intermediates in the metazoans. Biochim Biophys Acta 1823:1617–1632

    Article  CAS  Google Scholar 

  • Jaffe EK, Ali S, Mitchell LW, Taylor KM, Volin M, Markham GD (1995) Characterization of the role of the stimulatory magnesium of E. coli porphobilinogen synthase. Biochem 34:244–251

    Article  CAS  Google Scholar 

  • Kang Z, Wang Y, Wang Q, Qi Q (2011) Metabolic engineering to improve 5-aminolevulinic acid production. Bioeng Bugs 2:1–4

    Article  CAS  Google Scholar 

  • Kang Z, Zhang J, Zhou J, Qi Q, Du G, Chen J (2012) Recent advances in microbial production of delta-aminolevulinic acid and vitamin B12. Biotechnol Adv 30:1533–1542

    Article  CAS  Google Scholar 

  • Kang Z, Ding W, Gong X, Liu Q, Du G, Chen J (2017) Recent advances in production of 5-aminolevulinic acid using biological strategies. World J Microbiol Biotechnol 33(11):200

    Article  Google Scholar 

  • Lee DH, Jun WJ, Kim KM, Shin DH, Cho HY, Hong BS (2003) Inhibition of 5-aminolevulinic acid dehydratase in recombinant Escherichia coli using D-glucose. Enzyme Microb Technol 32:27–34

    Article  CAS  Google Scholar 

  • Li F, Wang Y, Gong K, Wang Q, Liang Q, Qi Q (2014) Constitutive expression of RyhB regulates the heme biosynthesis pathway and increases the 5-aminolevulinic acid accumulation in Escherichia coli. FEMS Microbiol Lett 350:209–215

    Article  CAS  Google Scholar 

  • Liu S, Zhang G, Li X, Zhang J (2014) Microbial production and applications of 5-aminolevulinic acid. Appl Microbiol Biotechnol 98:7349–7357

    Article  CAS  Google Scholar 

  • Mauzerall D, Granick S (1956) The occurrence and determination of delta-amino-levulinic acid and porphobilinogen in urine. J Biol Chem 219:446

    Article  Google Scholar 

  • Mills-Davies N, Butler D, Norton E et al (2017) Structural studies of substrate and product complexes of 5-aminolaevulinic acid dehydratase from humans, Escherichia coli and the hyperthermophile Pyrobaculum calidifontis. Acta Crystallogr D 73:9–21

    Article  CAS  Google Scholar 

  • Mobius K, Arias-Cartin R, Breckau D, Hannig AL, Riedmann K, Biedendieck R (2010) Heme biosynthesis is coupled to electron transport chains for energy generation. Proc Natl Acad Sci USA 107:10436–10441

    Article  Google Scholar 

  • Na D, Yoo SM, Chung H, Park H, Park JH, Lee SY (2013) Metabolic engineering of Escherichia coli using synthetic small regulatory RNAs. Nat Biotechnol 31:170–174

    Article  CAS  Google Scholar 

  • Nakashima N, Tamura T, Good L (2006) Paired termini stabilize antisense RNAs and enhance conditional gene silencing in Escherichia coli. Nucleic Acids Res 34:e138

    Article  Google Scholar 

  • Noh MH, Lim HG, Park S, Seo SW, Jung GY (2017) Precise flux redistribution to glyoxylate cycle for 5-aminolevulinic acid production in Escherichia coli. Metab Eng 43:1–8

    Article  CAS  Google Scholar 

  • Peng Q, Warloe T, Berg K, Moan J, Kongshaug M, Giercksky KE (1997) 5-Aminolevulinic acid-based photodynamic therapy. Clin Res Fut Challenges Cancer 79:2282–2308

    CAS  Google Scholar 

  • Sasaki K, Ikeda S, Nishizawa Y, Hayashi M (1987) Production of 5-aminolevulinic acid by photosynthetic bacteria. J Ferment Technol 65:511–515

    Article  CAS  Google Scholar 

  • Sasaki K, Watanabe M, Tanaka T, Tanaka T (2002) Biosynthesis, biotechnological production and applications of 5-aminolevulinic acid. Appl Microbiol Biotechnol 58:23–29

    Article  CAS  Google Scholar 

  • Schon A, Krupp G, Gough S, Berry-Lowe S, Kannangara CG, Soll D (1986) The RNA required in the first step of chlorophyll biosynthesis is a chloroplast glutamate tRNA. Nature 322:281–284

    Article  CAS  Google Scholar 

  • Sorensen MA, Kurland CG, Pedersen S (1989) Codon usage determines translation rate in Escherichia coli. J Mol Biol 207:365–377

    Article  CAS  Google Scholar 

  • Su T, Guo Q, Zheng Y, Liang Q, Wang Q, Qi Q (2019) Fine-tuning of hemB Using CRISPRi for Increasing 5-aminolevulinic acid production in Escherichia coli. Front Microbiol 31(10):1731

    Article  Google Scholar 

  • Sun T, Li S, Song X, Pei G, Diao J, Cui J, Shi M, Chen L, Zhang W (2018) Re-direction of carbon flux to key precursor malonyl-CoA via artificial small RNAs in photosynthetic Synechocystis sp. PCC 6803. Biotechnol Biofuels 5(11):26

    Article  Google Scholar 

  • Warnick GR, Burnham BF (1971) Regulation of prophyrin biosynthesis. Purification and characterization of 5-aminolevulinic acid synthase. J Biol Chem 246:6880–6885

    Article  CAS  Google Scholar 

  • Wu J, Yu O, Du G, Zhou J, Chen J (2014) Fine-tuning of the fatty acid pathway by synthetic antisense RNA for enhanced (2S)-naringenin production from l-tyrosine in Escherichia coli. Appl Environ Microbiol 80:7283–7292

    Article  Google Scholar 

  • Yang Y, Lin Y, Li L, Linhardt RJ, Yan Y (2015) Regulating malonyl-CoA metabolism via synthetic antisense RNAs for enhanced biosynthesis of natural products. Metab Eng 29:217–226

    Article  CAS  Google Scholar 

  • Yang P, Liu W, Cheng X, Wang J, Wang Q, Qi Q (2016) A new strategy for production of 5-aminolevulinic acid in recombinant Corynebacterium glutamicum with high yield. Appl Environ Microbiol 82(9):2709–2717

    Article  CAS  Google Scholar 

  • Yu X, Jin H, Liu W, Wang Q, Qi Q (2015) Engineering Corynebacterium glutamicum to produce 5-aminolevulinic acid from glucose. Microb Cell Fact 14:183

    Article  Google Scholar 

  • Zhang B, Ye BC (2018) Pathway engineering in Corynebacterium glutamicumS9114 for 5-aminolevulinic acid production. 3 Biotech 8(5):247

    Article  Google Scholar 

  • Zhang L, Chen J, Chen N, Sun J, Zheng P, Ma Y (2013) Cloning of two 5-aminolevulinic acid synthase isozymes HemA and HemO from Rhodopseudomonas palustris with favorable characteristics for 5-aminolevulinic acid production. Biotechnol Lett 35:763–768

    Article  CAS  Google Scholar 

  • Zhang JL, Kang Z, Chen J, Du GC (2015) Optimization of the heme biosynthesis pathway for the production of 5-aminolevulinic acid in Escherichia coli. Sci Rep 5:8584

    Article  CAS  Google Scholar 

  • Zhang J, Weng H, Ding W, Kang Z (2017) N-terminal engineering of glutamyl-tRNA reductase with positive charge arginine to increase 5-aminolevulinic acid biosynthesis. Bioengineered 8:424–427

    Article  CAS  Google Scholar 

  • Zhang J, Weng H, Zhou Z, Du G, Kang Z (2019) Engineering of multiple modular pathways for high-yield production of 5-aminolevulinic acid in Escherichia coli. Bioresour Technol 274:353–360

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by the Sichuan provincial Science & Technology Department (2018JY0106, 2018JY0310).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Li.

Ethics declarations

Conflict of interest

None of the authors has any financial or personal relationships that could inappropriately influence or bias the content of the research paper. The authors declare that they have no conflict of interest in the publication.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PPTX 78 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, F., Wen, D., Ren, Y. et al. Downregulating of hemB via synthetic antisense RNAs for improving 5-aminolevulinic acid production in Escherichia coli. 3 Biotech 11, 230 (2021). https://doi.org/10.1007/s13205-021-02733-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-021-02733-8

Keywords

Navigation