Skip to main content
Log in

Metabolic engineering of Escherichia coli to enhance acetol production from glycerol

  • Biotechnological products and process engineering
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Acetol, a C3 keto alcohol, is an important intermediate used to produce polyols and acrolein. To enhance acetol production from glycerol by Escherichia coli, a mutant (HJ02) was constructed by replacing the native glpK gene with the allele from E. coli Lin 43 and overexpression of yqhD, which encodes aldehyde oxidoreductase YqhD that converts methylglyoxal to acetol. Compared to the control strain without the glpK replacement, HJ02 had 5.5 times greater acetol production and a 53.4 % higher glycerol consumption rate. Then, glucose was added as a co-substrate to enhance NADPH availability and the ptsG gene was deleted in HJ02 (HJ04) to alleviate carbon catabolite repression, which led to a 30 % increase in the NADPH level and NADPH/NADP+. Consequently, HJ04 accumulated up to 1.20 g/L of acetol, which is 69.0 % higher than that of HJ02. Furthermore, the gapA gene in HJ04 was silenced by antisense RNA (HJ05) to further enhance acetol production. The acetol concentration produced by HJ05 reached 1.82 g/L, which was 2.1 and 1.5 times higher than that of HJ02 and HJ04.

Real-time PCR analysis indicates that glucose catabolism was rerouted from glycolysis to the oxidative pentose phosphate pathway in HJ05.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Almeida JRM, Fávaro LCL, Quirino BF (2012) Biodiesel biorefinery: opportunities and challenges for microbial production of fuels and chemicals from glycerol waste. Biotechnol Biofuels 5:48. doi:10.1186/1754-6834-5-48

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2:1–11. doi:10.1038/msb4100050

    Article  Google Scholar 

  • Booth IR, Ferguson GP, Miller S, Li C, Gunasekera B, Kinghorn S (2003) Bacterial production of methylglyoxal: a survival of strategy or death by misadventure? Biochem Soc Trans 31:1406–1408. doi:10.1042/BST0311406

    Article  CAS  PubMed  Google Scholar 

  • Cameron DC, Cooney CL (1986) A novel fermentation: the production of R(−)–1, 2–propanediol and acetol by Clostridium thermosaccharolyticum. Nat Biotechnol 4(7):651–654. doi:10.1038/nbt0786-651

    Article  CAS  Google Scholar 

  • Cherepanov P, Wackernagel W (1995) Gene disruption in Escherichia coli: Tc R and Km R cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Genes 9:0378–1119. doi:10.1016/0378-1119(95)00193-A

    Google Scholar 

  • Chin JW, Khankal R, Monroe CA, Maranas CD, Cirino PC (2009) Analysis of NADPH supply during xylitol production by engineered Escherichia coli. Biotechnol Bioeng 102(1):209–220. doi:10.1002/bit.22060

    Article  CAS  PubMed  Google Scholar 

  • Chubukov V, Uhr M, Le Chat L, Kleijn RJ, Jules M, Link H, Aymerich S, Stelling J, Sauer U (2013) Transcriptional regulation is insufficient to explain substrate-induced flux changes in Bacillus subtilis. Mol Syst Biol 9(1). doi:10.1038/msb.2013.66

  • Clomburg JM, Gonzalez R (2011) Metabolic engineering of Escherichia coli for the production of 1,2-propanediol from glycerol. Biotechnol Bioeng 108(4):867–879. doi:10.1002/bit.22993

    Article  CAS  PubMed  Google Scholar 

  • Clomburg JM, Gonzalez R (2013) Anaerobic fermentation of glycerol: a platform for renewable fuels and chemicals. Trends Biotechnol 31(1):20–28. doi:10.1016/j.tibtech.2012.10.006

    Article  CAS  PubMed  Google Scholar 

  • Cui YY, Ling C, Zhang YY, Huang J, Liu JZ (2014) Production of shikimic acid from Escherichia coli through chemically inducible chromosomal evolution and cofactor metabolic engineering. Microb Cell Factories 13:21. doi:10.1186/1475-2859-13-21

    Article  Google Scholar 

  • Deutscher J, Francke C, Postma PW (2006) How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol Mol Biol Rev 70(4):939–1031. doi:10.1128/MMBR.00024-06

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Freedberg WB, Kistler WS, Lin ECC (1971) Lethal synthesis of methylglyoxal by Escherichia coli during unregulated glycerol metabolism. J Bacteriol 108(1):137–144

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gosset G (2005) Improvement of Escherichia coli production strains by modification of the phosphoenolpyruvate: sugar phosphotransferase system. Microb Cell Factories 4(1):14. doi:10.1186/1475-2859-4-14

    Article  Google Scholar 

  • Gottlieb K, Albermann C, Sprenger GA (2014) Improvement of L-phenylalanine production from glycerol by recombinant Escherichia coli strains: the role of extra copies of glpK, glpX, and tktA genes. Microb Cell Factories 13(1):96. doi:10.1186/s12934-014-0096-1

    Article  Google Scholar 

  • Holtman CK, Thurlkill R, Pettigrew DW (2001) Unexpected presence of defective glpR alleles in various strains of Escherichia coli. J Bacteriol 183(4):1459–1461. doi:10.1128/JB.183.4.1459-1461.2001

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hopper DJ, Cooper RA (1972) The purification and properties of Escherichia coli methylglyoxal synthase. Biochem J 128(2):321–329

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jain R, Sun X, Yuan Q, Yan Y (2014) Systematically engineering Escherichia coli for enhanced production of 1, 2-propanediol and 1-propanol. Biol, ACS Synth. doi:10.1021/sb500345t

    Google Scholar 

  • Jan J, Martinez I, Wang Y, Bennett GN, San KY (2013) Metabolic engineering and transhydrogenase effects on NADPH availability in Escherichia coli. Biotechnol Prog 29(5):1124–1130. doi:10.1002/btpr.1765

    Article  CAS  PubMed  Google Scholar 

  • Jarboe LR (2011) YqhD: a broad-substrate range aldehyde reductase with various applications in production of biorenewable fuels and chemicals. Appl Microbiol Biotechnol 89(2):249–257. doi:10.1007/s00253-010-2912-9

    Article  CAS  PubMed  Google Scholar 

  • Kitagawa M, Ara T, Arifuzzaman M, Ioka-Nakamichi T, Inamoto E, Toyonaga H, Mori H (2005) Complete set of ORF clones of Escherichia coli ASKA library (a complete set of E. coli K-12 ORF archive): unique resources for biological research. DNA Res 12(5):291–299. doi:10.1093/dnares/dsi012

    Article  CAS  PubMed  Google Scholar 

  • Ko J, Kim I, Yoo S, Min B, Kim K, Park C (2005) Conversion of methylglyoxal to acetol by Escherichia coli aldo-keto reductases. J Bacteriol 187(16):5782–5789. doi:10.1128/jb.187.16.5782-5789.2005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kruger NJ, von Schaewen A (2003) The oxidative pentose phosphate pathway: structure and organisation. Curr Opin Plant Biol 6(3):236–246. doi:10.1016/S1369-5266(03)00039–6

  • Lee HC, Kim JS, Jang W, Kim SY (2010) High NADPH/NADP+ ratio improves thymidine production by a metabolically engineered Escherichia coli strain. J Biotechnol 149(1):24–32. doi:10.1016/j.jbiotec.2010.06.011

    Article  CAS  PubMed  Google Scholar 

  • Lim SJ, Jung YM, Shin HD, Lee YH (2002) Amplification of the NADPH-related genes zwf and gnd for the oddball biosynthesis of PHB in an E. coli transformant harboring a cloned phbCAB operon. J Biosci Bioeng 93(6):543–549 doi:10.1016/S1389-1723(02)80235–3

  • Lin ECC (1976) Glycerol dissimilation and its regulation in bacteria. Annu Rev Microbiol 30(1):535–578

    Article  CAS  PubMed  Google Scholar 

  • Marr AG (1991) Growth rate of Escherichia coli. Microbiol Rev 55(2):316–333. doi: 0146–0749/91/020316–18$02.00/0

  • Martínez K, de Anda R, Hernández G, Escalante A, Gosset G, Ramírez OT, Bolívar FG (2008) Coutilization of glucose and glycerol enhances the production of aromatic compounds in an Escherichia coli strain lacking the phosphoenolpyruvate: carbohydrate phosphotransferase system. Microb Cell Factories 7(1):1. doi:10.1186/1475-2859-7-1

  • Mazumdar S, Blankschien MD, Clomburg JM, Gonzalez R (2013) Efficient synthesis of L-lactic acid from glycerol by metabolically engineered Escherichia coli. Microb Cell Factories 12(1):7. doi:10.1186/1475-2859-12-7

    Article  CAS  Google Scholar 

  • Mohamad MH, Awang R, Yunus WMZW (2011) A review of acetol: application and production. Am J Appl Sci 8. doi:10.3844/ajassp.2011.1135.1139

  • Nakashima N, Tamura T (2009) Conditional gene silencing of multiple genes with antisense RNAs and generation of a mutator strain of Escherichia coli. Nucleic Acids Res 37(15):e103. doi:10.1093/nar/gkp498

  • Pettigrew DW, Ma DP, Conrad CA, Johnson JR (1988) Escherichia coli glycerol kinase: cloning and sequencing of the glpK gene and the primary structure of the enzyme. J Biol Chem 263(5):135–139

    CAS  PubMed  Google Scholar 

  • Pettigrew DW, Liu WZ, Holmes C, Holmes C, Meadow ND, Roseman S (1996) A single amino acid change in Escherichia coli glycerol kinase abolishes glucose control of glycerol utilization in vivo. J Bacteriol 178(10):2846–2852

    PubMed Central  CAS  PubMed  Google Scholar 

  • Reeves HC, Brehmeyer BA, Ajl SJ (1968) Multiple forms of bacterial NADP-specific isocitrate dehydrogenase. Science 162(3851):359–360. doi:10.1126/science.162.3851.359

    Article  CAS  PubMed  Google Scholar 

  • Sato S, Akiyama M, Takahashi R, Hara T, Inui K, Yokota M (2008) Vapor-phase reaction of polyols over copper catalysts. Appl Catal A 347(2):186–191. doi:10.1016/j.apcata.2008.06.013

    Article  CAS  Google Scholar 

  • Sauer U, Canonaco F, Heri S, Perrenoud A, Fischer E (2004) The soluble and membrane-bound transhydrogenases UdhA and PntAB have divergent functions in NADPH metabolism of Escherichia coli. J Biol Chem 279(8):6613–6619. doi:10.1074/jbc.M311657200

    Article  CAS  PubMed  Google Scholar 

  • Seta FD, Boschi-Muller S, Vignais M, Branlant G (1997) Characterization of Escherichia coli strains with gapA and gapB genes deleted. J Bacteriol 179(16):5218–5221. doi: 0021–9193/97/$04.00 + 0

  • Siedler S, Lindner SN, Bringer S, Wendisch VF, Bott M (2013) Reductive whole-cell biotransformation with Corynebacterium glutamicum: improvement of NADPH generation from glucose by a cyclized pentose phosphate pathway using pfkA and gapA deletion mutants. Appl Microbiol Biotechnol 97(1):143–152. doi:10.1007/s00253-012-4314-7

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Soucaille P, Meynial-Salles I, Voelker F, Figge R (2008a) Metabolically engineered microorganisms for production of 1,2-propanediol and acetol. WO 2008/116853

  • Soucaille P, Voelker F, Figge R (2008b) Metabolically engineered microorganism useful for the production of acetol. WO2008/116851

  • Wang Z, Yang ST (2013) Propionic acid production in glycerol/glucose co-fermentation by Propionibacterium freudenreichii subsp. shermanii. Bioresour Technol 137(0):116–123. doi:10.1016/j.biortech.2013.03.012

  • Wong MS, Li M, Black RW, Le TQ, Puthli S, Campbell P, Monticello DJ (2014) Microaerobic conversion of glycerol to ethanol in Escherichia coli. Appl Environ Microbiol 80(10):3276–3282. doi:10.1128/AEM.03863-13

    Article  PubMed Central  PubMed  Google Scholar 

  • Wu H, Karanjikar M, San KY (2014) Metabolic engineering of Escherichia coli for efficient free fatty acid production from glycerol. Metab Eng 25:82–91. doi:10.1016/j.ymben.2014.06.009

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi A, Hiyoshi N, Sato O, Shirai M (2010) Dehydration of triol compounds in high-temperature liquid water under high-pressure carbon dioxide. Top Catal 53(7):487–491. doi:10.1007/s11244-010-9476-x

    Article  CAS  Google Scholar 

  • Yang Y, Yuan C, Dou J, Han X, Wang H, Fang H, Zhou C (2014) Recombinant expression of glpK and glpD genes improves the accumulation of shikimic acid in E. coli grown on glycerol. World J Microbiol Biotechnol 30(12):3263–3272. doi:10.1007/s11274-014-1753-6

    Article  CAS  PubMed  Google Scholar 

  • Zhu H, Yi X, Liu Y, Hu H, Wood TK, Zhang X (2013) Production of acetol from glycerol using engineered Escherichia coli. Bioresour Technol 149:238–243. doi:10.1016/j.biortech.2013.09.062

    Article  CAS  PubMed  Google Scholar 

  • Zwaig N, Kistler WS, Lin EC (1970) Glycerol kinase, the pacemaker for the dissimilation of glycerol in Escherichia coli. J Bacteriol 102(3):753–759

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by 973 Programs of China (2012CB721005), the National Natural Science Foundation of China (31400086 and J1210047), and China Postdoctoral Science Foundation (2014M551404). The authors are grateful to Dr. Nakashima at Advanced Industrial Science and Technology (AIST) in Japan for kindly providing the plasmid of pHN1009.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongbo Hu.

Electronic supplementary material

ESM 1.

(PDF 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, R., Liu, Q., Hu, H. et al. Metabolic engineering of Escherichia coli to enhance acetol production from glycerol. Appl Microbiol Biotechnol 99, 7945–7952 (2015). https://doi.org/10.1007/s00253-015-6732-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-015-6732-9

Keywords

Navigation