Skip to main content

Advertisement

Log in

Recent advances in production of 5-aminolevulinic acid using biological strategies

  • Review
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

5-Aminolevulinic acid (5-ALA) is the precursor for the biosynthesis of tetrapyrrole compounds and has broad applications in the medical and agricultural fields. Because of the disadvantages of chemical synthesis methods, microbial production of 5-ALA has drawn intensive attention and has been regarded as an alternative in the last years, especially with the rapid development of metabolic engineering and synthetic biology. In this mini-review, recent advances on the application and microbial production of 5-ALA using novel biological approaches (such as whole-cell enzymatic-transformation, metabolic pathway engineering and cell-free process) are described and discussed in detail. In addition, the challenges and prospects of synthetic biology are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ali AH et al (2011) 5-Aminolevulinic acid-induced fluorescence diagnosis of pleural malignant tumor. Lung Cancer 74:48–54. doi:10.1016/j.lungcan.2011.01.031

    Article  Google Scholar 

  • Ang JM, Riaz IB, Kamal MU, Paragh G, Zeitouni NC (2017) Photodynamic therapy and pain: a systematic review. Photodiagn Photodyn Ther. doi:10.1016/j.pdpdt.2017.07.002

    Google Scholar 

  • Cornelius JF, Slotty PJ, El Khatib M, Giannakis A, Senger B, Steiger HJ (2014) Enhancing the effect of 5-aminolevulinic acid based photodynamic therapy in human meningioma cells. Photodiagn Photodyn 11:1–6. doi:10.1016/j.pdpdt.2014.01.001

    Article  CAS  Google Scholar 

  • De Souza AL et al (2016) Comparing desferrioxamine and light fractionation enhancement of ALA-PpIX photodynamic therapy in skin cancer. Br J Cancer 115:805–813. doi:10.1038/bjc.2016.267

    Article  Google Scholar 

  • Ding WW, Weng HJ, Du GC, Chen J, Kang Z (2017) 5-Aminolevulinic acid production from inexpensive glucose by engineering the C4 pathway in Escherichia coli. J Ind Microbiol Biotechnol 44:1127–1135. doi:10.1007/s10295-017-1940-1

    Article  CAS  Google Scholar 

  • Etminan N et al (2011) Modulation of migratory activity and invasiveness of human glioma spheroids following 5-aminolevulinic acid based photodynamic treatment laboratory investigation. J Neurosurg 115:281–288. doi:10.3171/2011.3.JNS10434

    Article  CAS  Google Scholar 

  • Feng LL, Zhang Y, Fu J, Mao YF, Chen T, Zhao XM, Wang ZW (2016) Metabolic engineering of Corynebacterium glutamicum for efficient production of 5-aminolevulinic acid. Biotechnol Bioeng 113:1284–1293. doi:10.1002/bit.25886

    Article  CAS  Google Scholar 

  • Filonenko EV, Kaprin AD, Alekseev BYA, Apolikhin OI, Slovokhodov EK, Ivanova-Radkevich VI, Urlova AN (2016) 5-Aminolevulinic acid in intraoperative photodynamic therapy of bladder cancer (results of multicenter trial). Photodiagn Photodyn 16:106–109. doi:10.1016/j.pdpdt.2016.09.009

    Article  CAS  Google Scholar 

  • Friesen SA, Hjortland GO, Madsen SJ, Hirschberg H, Engebraten O, Nesland JM, Peng Q (2002) 5-aminolevulinic acid-based photodynamic detection and therapy of brain tumors (review). Int J Oncol 21:577–582

    CAS  Google Scholar 

  • Fu XZ, Tan D, Aibaidula G, Wu Q, Chen JC, Chen GQ (2014) Development of Halomonas TD01 as a host for open production of chemicals. Metab Eng 23:78–91. doi:10.1016/j.ymben.2014.02.006

    Article  CAS  Google Scholar 

  • Fukuda H, Casas A, Batlle A (2005) Aminolevulinic acid: from its unique biological function to its star role in photodynamic therapy. Int J Biochem Cell Biol 37:272–276. doi:10.1016/j.biocel.2004.04.018

    Article  CAS  Google Scholar 

  • Grigalavicius M, Juraleviciute M, Kwitniewski M, Juzeniene A (2017) The influence of photodynamic therapy with 5-aminolevulinic acid on senescent skin cancer cells. Photodiagn Photodyn Ther 17:29–34. doi:10.1016/j.pdpdt.2016.10.008

    Article  CAS  Google Scholar 

  • Herceg V, Lange N, Allemann E, Babic A (2017) Activity of phosphatase-sensitive 5-aminolevulinic acid prodrugs in cancer cell lines. J Photochem Photobiol B 171:34–42. doi:10.1016/j.jphotobiol.2017.04.029

    Article  CAS  Google Scholar 

  • Hodgman CE, Jewett MC (2012) Cell-free synthetic biology: thinking outside the cell. Metab Eng 14:261–269. doi:10.1016/j.ymben.2011.09.002

    Article  CAS  Google Scholar 

  • Inoue K (2017) 5-Aminolevulinic acid-mediated photodynamic therapy for bladder cancer. Int J Urol 24:97–101. doi:10.1111/iju.13291

    Article  CAS  Google Scholar 

  • Inoue K et al (2009) Regulation of 5-aminolevulinic acid-mediated protoporphyrin IX accumulation in human urothelial carcinomas pathobiology. Pathobiology 76:303–314. doi:10.1159/000245896

    Article  CAS  Google Scholar 

  • Inoue K et al (2013) Photodynamic therapy involves an antiangiogenic mechanism and is enhanced by ferrochelatase inhibitor in urothelial carcinoma. Cancer Sci 104:765–772. doi:10.1111/cas.12147

    Article  CAS  Google Scholar 

  • Ishizuka M et al (2011) Novel development of 5-aminolevurinic acid (ALA) in cancer diagnoses and therapy. Int Immunopharmacol 11:358–365. doi:10.1016/j.intimp.2010.11.029

    Article  CAS  Google Scholar 

  • Jin P, Kang Z, Zhang JL, Zhang LP, Du GC, Chen J (2016a) Combinatorial evolution of enzymes and synthetic pathways using one-step PCR. ACS Synth Biol 5:259–268. doi:10.1021/acssynbio.5b00240

    Article  CAS  Google Scholar 

  • Jin P, Zhang L, Yuan P, Kang Z, Du G, Chen J (2016b) Efficient biosynthesis of polysaccharides chondroitin and heparosan by metabolically engineered Bacillus subtilis. Carbohydr Polym 140:424–432. doi:10.1016/j.carbpol.2015.12.065

    Article  CAS  Google Scholar 

  • Kang Z, Gao C, Wang Q, Liu H, Qi Q (2010a) A novel strategy for succinate and polyhydroxybutyrate co-production in Escherichia coli. Bioresour Technol 101:7675–7678. doi:10.1016/j.biortech.2010.04.084

    Article  CAS  Google Scholar 

  • Kang Z, Gao CJ, Wang QA, Liu HM, Qi Q (2010b) A novel strategy for succinate and polyhydroxybutyrate co-production in Escherichia coli. Bioresour Technol 101:7675–7678. doi:10.1016/j.biortech.2010.04.084

    Article  CAS  Google Scholar 

  • Kang Z, Du L, Kang J, Wang Y, Wang Q, Liang Q, Qi Q (2011a) Production of succinate and polyhydroxyalkanoate from substrate mixture by metabolically engineered Escherichia coli. Bioresour Technol 102:6600–6604. doi:10.1016/j.biortech.2011.03.070

    Article  CAS  Google Scholar 

  • Kang Z, Wang Y, Gu PF, Wang Q, Qi Q (2011b) Engineering Escherichia coli for efficient production of 5-aminolevulinic acid from glucose. Metab Eng 13:492–498. doi:10.1016/j.ymben.2011.05.003

    Article  CAS  Google Scholar 

  • Kang Z, Wang Y, Wang Q, Qi Q (2011c) Metabolic engineering to improve 5-aminolevulinic acid production. Bioeng Bugs 2:342–345. doi:10.4161/bbug.2.6.17237

    Article  Google Scholar 

  • Kang Z, Zhang J, Zhou J, Qi Q, Du G, Chen J (2012) Recent advances in microbial production of delta-aminolevulinic acid and vitamin B12. Biotechnol Adv 30:1533–1542. doi:10.1016/j.biotechadv.2012.04.003

    Article  CAS  Google Scholar 

  • Kang Z, Huang H, Zhang Y, Du G, Chen J (2017) Recent advances of molecular toolbox construction expand Pichia pastoris in synthetic biology applications. World J Microbiol Biotechnol 33:19. doi:10.1007/s11274-016-2185-2

    Article  Google Scholar 

  • Kishi K et al (2016) Usefulness of diagnostic laparoscopy with 5-aminolevulinic acid (ALA)-mediated photodynamic diagnosis for the detection of peritoneal micrometastasis in advanced gastric cancer after chemotherapy. Surg Today 46:1427–1434. doi:10.1007/s00595-016-1328-2

    Article  CAS  Google Scholar 

  • Kitada M, Ohsaki Y, Matsuda Y, Hayashi S, Ishibashi K (2015) Photodynamic diagnosis of pleural malignant lesions with a combination of 5-aminolevulinic acid and intrinsic fluorescence observation systems. BMC Cancer 15:174. doi:10.1186/s12885-015-1194-0

    Article  Google Scholar 

  • Koh RH, Song HG (2007) Effects of application of Rhodopseudomonas sp on seed germination and growth of tomato under axenic conditions. J Microbiol Biotechnol 17:1805–1810

    CAS  Google Scholar 

  • Koizumi N, Harada Y, Minamikawa T, Tanaka H, Otsuji E, Takamatsu T (2016) Recent advances in photodynamic diagnosis of gastric cancer using 5-aminolevulinic acid. World J Gastroenterol 22:1289–1296. doi:10.3748/wjg.v22.i3.1289

    Article  CAS  Google Scholar 

  • Lee JH, Wendisch VF (2017) Production of amino acids—genetic and metabolic engineering approaches. Bioresour Technol. doi:10.1016/j.biortech.2017.05.065

    Google Scholar 

  • Lee KH, Koh RH, Song HG (2008) Enhancement of growth and yield of tomato by Rhodopseudomonas sp under greenhouse conditions. J Microbiol 46:641–646. doi:10.1007/s12275-008-0159-2

    Article  CAS  Google Scholar 

  • Li F, Wang Y, Gong K, Wang Q, Liang Q, Qi Q (2014) Constitutive expression of RyhB regulates the heme biosynthesis pathway and increases the 5-aminolevulinic acid accumulation in Escherichia coli. FEMS Microbiol Lett 350:209–215. doi:10.1111/1574-6968.12322

    Article  CAS  Google Scholar 

  • Li T, Guo YY, Qiao GQ, Chen GQ (2016) Microbial synthesis of 5-aminolevulinic acid and its coproduction with polyhydroxybutyrate. ACS Synth Biol 5(11):1264–1274. doi:10.1021/acssynbio.6b00105

    CAS  Google Scholar 

  • Liang Q, Qi Q (2014) From a co-production design to an integrated single-cell biorefinery. Biotechnol Adv 32:1328–1335. doi:10.1016/j.biotechadv.2014.08.004

    Article  CAS  Google Scholar 

  • Lin J, Fu W, Cen P (2009) Characterization of 5-aminolevulinate synthase from Agrobacterium radiobacter, screening new inhibitors for 5-aminolevulinate dehydratase from Escherichia coli and their potential use for high 5-aminolevulinate production. Bioresour Technol 100:2293–2297. doi:10.1016/j.biortech.2008.11.008

    Article  CAS  Google Scholar 

  • Liu S, Zhang G, Li X, Zhang J (2014) Microbial production and applications of 5-aminolevulinic acid. Appl Microbiol Biotechnol 98:7349–7357. doi:10.1007/s00253-014-5925-y

    Article  CAS  Google Scholar 

  • Liu S, Zhang G, Li J, Li X, Zhang J (2016) Optimization of biomass and 5-aminolevulinic acid production by Rhodobacter sphaeroides ATCC17023 via response surface methodology. Appl Biochem Biotechnol 179:444–458. doi:10.1007/s12010-016-2005-z

    Article  CAS  Google Scholar 

  • Lou JW, Zhu L, Wu MB, Yang LR, Lin JP, Cen PL (2014) High-level soluble expression of the hemA gene from Rhodobacter capsulatus and comparative study of its enzymatic properties. J Zhejiang Univ Sci B 15:491–499. doi:10.1631/jzus.B1300283

    Article  CAS  Google Scholar 

  • Meng QL, Zhang YF, Ma CL, Ma HW, Zhao XM, Chen T (2015) Purification and functional characterization of thermostable 5-aminolevulinic acid synthases. Biotechnol Lett 37:2247–2253. doi:10.1007/s10529-015-1903-4

    Article  CAS  Google Scholar 

  • Meng QL et al (2016) Production of 5-aminolevulinic acid by cell free multi-enzyme catalysis. J Biotechnol 226:8–13. doi:10.1016/j.jbiotec.2016.03.024

    Article  CAS  Google Scholar 

  • Mohammadpour H, Fekrazad R (2016) Antitumor effect of combined Dkk-3 and 5-ALA mediated photodynamic therapy in breast cancer cell’s colony. Photodiagn Photodyn Ther 14:200–203. doi:10.1016/j.pdpdt.2016.04.001

    Article  CAS  Google Scholar 

  • Namikawa T et al (2014) Photodynamic diagnosis using 5-aminolevulinic acid during gastrectomy for gastric cancer. J Surg Oncol 109:213–217. doi:10.1002/jso.23487

    Article  CAS  Google Scholar 

  • Noh MH, Lim HG, Park S, Seo SW, Jung GY (2017) Precise flux redistribution to glyoxylate cycle for 5-aminolevulinic acid production in Escherichia coli. Metab Eng 43:1–8. doi:10.1016/j.ymben.2017.07.006

    Article  CAS  Google Scholar 

  • Nunkaew T, Kantachote D, Kanzaki H, Nitoda T, Ritchie RJ (2014) Effects of 5-aminolevulinic acid (ALA)-containing supernatants from selected Rhodopseudomonas palustris strains on rice growth under NaCl stress, with mediating effects on chlorophyll, photosynthetic electron transport and antioxidative enzymes. Electron J Biotechnol. doi:10.1016/j.ejbt.2013.12.004

    Google Scholar 

  • Ramzi AB, Hyeon JE, Kim SW, Park C, Han SO (2015) 5-Aminolevulinic acid production in engineered Corynebacterium glutamicum via C5 biosynthesis pathway. Enzyme Microb Technol 81:1–7. doi:10.1016/j.enzmictec.2015.07.004

    Article  CAS  Google Scholar 

  • Sakpirom J, Kantachote D, Nunkaew T, Khan E (2017) Characterizations of purple non-sulfur bacteria isolated from paddy fields, and identification of strains with potential for plant growth-promotion, greenhouse gas mitigation and heavy metal bioremediation. Res Microbiol 168:266–275. doi:10.1016/j.resmic.2016.12.001

    Article  CAS  Google Scholar 

  • Sasaki K, Watanabe M, Tanaka T, Tanaka T (2002) Biosynthesis, biotechnological production and applications of 5-aminolevulinic acid. Appl Microbiol Biotechnol 58:23–29

    Article  CAS  Google Scholar 

  • Shimamura Y et al (2016) 5-aminolevulinic acid enhances ultrasound-mediated antitumor activity via mitochondrial oxidative damage in breast cancer. Anticancer Res 36:3607–3612

    CAS  Google Scholar 

  • Tan D, Xue YS, Aibaidula G, Chen GQ (2011) Unsterile and continuous production of polyhydroxybutyrate by Halomonas TD01. Bioresour Technol 102:8130–8136. doi:10.1016/j.biortech.2011.05.068

    Article  CAS  Google Scholar 

  • Tan D, Wu Q, Chen JC, Chen GQ (2014) Engineering Halomonas TD01 for the low-cost production of polyhydroxyalkanoates. Metab Eng 26:34–47. doi:10.1016/j.ymben.2014.09.001

    Article  CAS  Google Scholar 

  • Tian T, Ali B, Qin YB, Malik Z, Gill RA, Ali S, Zhou WJ (2014) Alleviation of lead toxicity by 5-aminolevulinic acid Is related to elevated growth, photosynthesis, and suppressed ultrastructural damages in oilseed rape. Biomed Res Int. doi:10.1155/2014/530642

    Google Scholar 

  • Wachowska M et al (2011) Aminolevulinic Acid (ALA) as a prodrug in photodynamic therapy of cancer. Molecules 16:4140–4164. doi:10.3390/molecules16054140

    Article  CAS  Google Scholar 

  • Wang Q, Yu H, Xia Y, Kang Z, Qi Q (2009) Complete PHB mobilization in Escherichia coli enhances the stress tolerance: a potential biotechnological application. Microb Cell Fact 8:47. doi:10.1186/1475-2859-8-47

    Article  Google Scholar 

  • Wendisch VF, Jorge JMP, Perez-Garcia F, Sgobba E (2016) Updates on industrial production of amino acids using Corynebacterium glutamicum. World J Microbiol Biotechnol 32:105. doi:10.1007/s11274-016-2060-1

    Article  Google Scholar 

  • Wu JN, Han HJ, Jin Q, Li ZH, Li H, Ji J (2017) Design and proof of programmed 5-aminolevulinic acid prodrug nanocarriers for targeted photodynamic cancer therapy. ACS Appl Mater Interfaces 9:14596–14605. doi:10.1021/acsami.6b15853

    Article  CAS  Google Scholar 

  • Yang P, Liu WJ, Cheng XL, Wang J, Wang Q, Qi Q (2016) A new strategy for production of 5-aminolevulinic acid in recombinant Corynebacterium glutamicum with high yield. Appl Environ Microbiol 82:2709–2717. doi:10.1128/Aem.00224-16

    Article  CAS  Google Scholar 

  • Yu X, Jin H, Liu W, Wang Q, Qi Q (2015) Engineering Corynebacterium glutamicum to produce 5-aminolevulinic acid from glucose. Microb Cell Fact 14:183. doi:10.1186/s12934-015-0364-8

    Article  Google Scholar 

  • Zhang L, Chen J, Chen N, Sun J, Zheng P, Ma Y (2013) Cloning of two 5-aminolevulinic acid synthase isozymes HemA and HemO from Rhodopseudomonas palustris with favorable characteristics for 5-aminolevulinic acid production. Biotechnol Lett 35:763–768. doi:10.1007/s10529-013-1143-4

    Article  CAS  Google Scholar 

  • Zhang J, Kang Z, Chen J, Du G (2015a) Optimization of the heme biosynthesis pathway for the production of 5-aminolevulinic acid in Escherichia coli. Sci Rep 5:8584. doi:10.1038/srep08584

    Article  CAS  Google Scholar 

  • Zhang ZP, Miao MM, Wang CL (2015b) Effects of ALA on photosynthesis, antioxidant enzyme activity, and gene expression, and regulation of proline sccumulation in tomato seedlings under NaCl stress. J Plant Growth Regul 34:637–650. doi:10.1007/s00344-015-9499-4

    Article  CAS  Google Scholar 

  • Zhang J, Kang Z, Ding W, Chen J, Du G (2016) Integrated optimization of the in vivo heme biosynthesis pathway and the in vitro iron concentration for 5-aminolevulinate production. Appl Biochem Biotechnol 178:1252–1262. doi:10.1007/s12010-015-1942-2

    Article  CAS  Google Scholar 

  • Zhang J, Weng H, Ding W, Kang Z (2017) N-terminal engineering of glutamyl-tRNA reductase with positive charge arginine to increase 5-aminolevulinic acid biosynthesis. Bioengineered 8:424–427. doi:10.1080/21655979.2016.1230572

    Article  CAS  Google Scholar 

  • Zou Y, Chen T, Feng L, Zhang S, Xing D, Wang Z (2017) Enhancement of 5-aminolevulinic acid production by metabolic engineering of the glycine biosynthesis pathway in Corynebacterium glutamicum. Biotechnol Lett 39:1369–1374. doi:10.1007/s10529-017-2362-x

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Fundamental Research Funds for the Central Universities (JUSRP51707A), the National Natural Science Foundation of China (31670092) and the Program for Changjiang Scholars and Innovative Research Team in University (No. IRT_15R26).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Kang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, Z., Ding, W., Gong, X. et al. Recent advances in production of 5-aminolevulinic acid using biological strategies. World J Microbiol Biotechnol 33, 200 (2017). https://doi.org/10.1007/s11274-017-2366-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-017-2366-7

Keywords

Navigation