Skip to main content
Log in

Antifungal, plant growth-promoting, and mycotoxin detoxication activities of Burkholderia sp. strain XHY-12

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

A bacterial strain named XHY-12 was isolated from corn soil samples and identified as Burkholderia sp. based on 16S rDNA sequencing, it displayed high antagonistic activity against 12 fungal pathogens and the common fungal contaminant in grain Aspergillus flavus. Plate experiment showed that XHY-12 fermentation broth reduced the incidence of S. sclerotiorum on detached rape leaves (Brassica campestris L.) by 100%, and a greenhouse experiment showed that it could promote the growth of rape seedlings with significant increases in plant height, root length, and fresh weight. Furthermore, a novel funding was the reduction of aflatoxin B1 and B2 by over 85% in 60 h, and the decomposition enzymes should be extracellular. The results suggest that XHY-12 has a potential for commercial applications as biocontrol, mycotoxin detoxification agent or biofertilizer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdallah RAB, Tlili SM, Nefzi A, Khiareddine HJ, Remadi MD (2016) Biotcontrol of Fusarium wilt and growth promotion of tomato plants using endophytic bacteria isolated from Nicotianaglauca organs. Biol Control 97:80–88

    Article  Google Scholar 

  • Ben L, Faina K (2009) Plant growth promoting rhizobacteria. Annu Rev Microbiol 1:541–556

    Google Scholar 

  • Beneduzi A, Ambrosini A, Passaglia LMP (2012) Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genet Mol Biol 35:1044–1051

    Article  CAS  Google Scholar 

  • Bevivino A, Peggion V, Chiarini L, Tabacchioni S, Cantale C, Dalmastri C (2005) Effect of Fusarium verticillioides on maize-root-associated Burkholderia cenocepacia populations. Res Microbiol 156:974–983

    Article  Google Scholar 

  • Bowers JH, Parke JL (1993) Epidemiology of Pythium damping-off and Aphanomyces root rot of peas after seed treatment with bacterial agents for biological control. Phytopathology 83:1466–1473

    Article  Google Scholar 

  • Cartwright DK, Chilton WS, Benson DM (1995) Pyrrolnitrin and phenazine production by Pseudomonas cepacia, strain 5.5B, a biocontrol agent of Rhizoctonia solani. Appl Microbiol Biotechnol 43:211–216

    Article  CAS  Google Scholar 

  • Chapman KS, Sundin GW, Beckerman JL (2011) Identification of resistance to multiple fungicides in field populations of Venturia inaequalis. Plant Dis 95:921–926

    Article  CAS  Google Scholar 

  • Chin A, Woeng TFC, Bloemberg GV, Lugtenberg BJ (2003) Phenazines and their role in biocontrol by Pseudomonas bacteria. New Phytol 157:503–523

    Article  Google Scholar 

  • Coenye T, Vandamme P (2003) Diversity and significance of Burkholderia species occupying diverse ecological niches. Environ Microbiol 5:719–729

    Article  CAS  Google Scholar 

  • de los Santos-Villalobos S, Barrera-Galicia GC, Miranda-Salcedo MA, José Peña-Cabriales J (2012) Burkholderia cepacia XXVI siderophore with biocontrol capacity against Colletotrichum gloeosporioides. World J Microb Biotechnol 28:2615–2623

    Article  Google Scholar 

  • Directive 2002/32/EC of the European parliament and of the council. On undesirable substances in animal feed. Section II: Mycotoxins

  • Eljounaidi K, Lee SK, Bae H (2016) Bacterial endophytes as potential biocontrol agents of vascular wilt diseases—review and future prospects. Biol Control 103:62–69

    Article  Google Scholar 

  • Fravel DR (2005) Commercialization and implementation of biocontrol. Annu Rev Phytopathol 43:337–359

    Article  CAS  Google Scholar 

  • Garau G, Yates RJ, Deiana P, Howieson JG (2009) Novel strains of nodulating Burkholderia have a role in nitrogen fixation with papilionoid herbaceous legumes adapted to acid, infertile soils. Soil Biol Biochem 41:125–134

    Article  CAS  Google Scholar 

  • Gina S, Shreve S (1999) Biodegradation kinetics of trichloroethylene and 1, 2-dichloroethane by Burkholderia (Pseudomonas) cepacia PR131 and Xanthobacter autotrophicus GJ10. Int Biodeter Biodegr 43:57–61

    Article  Google Scholar 

  • Haas D, Defago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319

    Article  CAS  Google Scholar 

  • Hebbar KP, Atkinson D, Tucker W, Dart PJ (1992) Suppression of Fusarium moniliforme by maize root-associated Pseudomonas cepacia. Soil Biol Biochem 24:1009–1020

    Article  Google Scholar 

  • Höfte M, Altier N (2010) Fluorescent pseudomonads as biocontrol agents for sustainable agricultural systems. Res Microbiol 161:464–471

    Article  Google Scholar 

  • Homma Y, Sato Z, Hirayama F, Konno K, Shirahama H, Suzui T (1989) Production of antibiotics by Pseudomonas cepacia as an agent for biological control of soilborne plant pathogens. Soil Biol Biochem 21:723–728

    Article  CAS  Google Scholar 

  • Hwang J, Chilton WS, Benson DM (2002) Pyrrolnitrin production by Burkholderia cepacia and biocontrol of Rhizoctonia stem rot of poinsettia. Biol Control 25:56–63

    Article  CAS  Google Scholar 

  • Jennifer LP, Doug GS (2001) Diversity of the Burkholderia cepacia complex and implications for risk assessment of biological control strains. Annu Rev Phytopathol 39:225–258

    Article  Google Scholar 

  • Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 115–175

    Google Scholar 

  • Lenteren JCV, Bolckmans K, Köhl J, Ravensberg WJ, Urbaneja A (2017) Biological control using invertebrates and microorganisms: plenty of new opportunities. Biocontrol 63:39–59

    Article  Google Scholar 

  • Ligon JM, Hill DS, Hammer P, Torkewitz N, Hofmann D, Kemf HJ, van Pée KH (2000) Natural products with antifungal activity from Pseudomonas biocontrol bacteria. Pest Manage Sci 56:688–695

    Article  CAS  Google Scholar 

  • Liu K, Newman M, McInroy JA, Hu CH, Kloepper JW (2017) Selection and assessment of plant growth-promoting rhizobacteria for biological control of multiple plant diseases. Phytopathology 107:928–936

    Article  CAS  Google Scholar 

  • Miller SCM, Lipuma JJ, Parke JL (2002) Culture-based and non-growth-dependent detection of the Burkholderia cepacia complex in soil environments. Appl Environ Microbiol 68:3750–3758

    Article  CAS  Google Scholar 

  • Minerdi D, Fani R, Gallo R, Boarino A, Bonfante P (2001) Nitrogen fixation genes in an endosymbiotic Burkholderia strain. Appl Environ Microb 67:725–732

    Article  CAS  Google Scholar 

  • Mishra J, Arora NK (2018) Secondary metabolites of fluorescent pseudomonads in biocontrol of phytopathogens for sustainable agriculture. Appl Soil Ecol 125:35–45

    Article  Google Scholar 

  • Nacamulli C, Bevivino A, Dalmastri C, Tabacchioni S, Chiarini L (1997) Perturbation of maize rhizosphere microflora following seed bacterization with Burkholderia cepacia MCI 7. FEMS Microbiol Ecol 23:183–193

    Article  CAS  Google Scholar 

  • Paulitz TC, Bélanger RR (2001) Biological control in greenhouse systems. Annu Rev phytopathol 39:103–133

    Article  CAS  Google Scholar 

  • Ramesh SK, Namrata M, Singh S (2013) Improved nutrient use efficiency increases plant growth of rice with the use of IAA-Overproducing strains of endophytic Burkholderia cepacia strain RRE25. Microb Ecol 66:375–384

    Article  CAS  Google Scholar 

  • Roitman JN, Mahoney NE, Janisiewicz WJ, Benson M (1990) A new chlorinated phenylpyrrole antibiotic produced by the antifungal bacterium Pseudomonas cepacia. J Agric Food Chem 38:538–541

    Article  CAS  Google Scholar 

  • Saint CP, Romas P (1996) 4-Methylphthalate catabolism in Burkholderia (Pseudomonas) cepacia Pc701: a gene encoding a phthalate-specific permease forms part of a novel gene cluster. Microbiol 142:2407–2418

    Article  CAS  Google Scholar 

  • Serfling A, Wirsel SGR, Lind V, Deising HB (2007) Performance of the biocontrol fungus Piriformospora indica on wheat under greenhouse and field conditions. Phytopathology 97:523–531

    Article  CAS  Google Scholar 

  • Sharma GRR, Singh D, Singh R (2009) Biological control of postharvest diseases of fruits and vegetables by microbial antagonists: a review. Biol Control 50:205–221

    Article  Google Scholar 

  • Shields MS, Reagin MJ (1992) Selection of a Pseudomonas cepacia strain constitutive for the degradation of trichloroethylene. Appl Environ Microbiol 58:3977–3983

    Article  CAS  Google Scholar 

  • Sokol PA, Darling P, Woods DE, Mahenthiralingam E, Kooi C (1999) Role of ornibactin biosynthesis in the virulence of Burkholderia cepacia: characterization of pvdA, the gene encoding L-ornithine N(5)-oxygenase. Infect Immunol 67:4443–4455

    Article  CAS  Google Scholar 

  • Tabacchioni S, Bevivino A, Dalmastri C, Chiarini L (2002) Burkholderia cepacia complex in the rhizosphere: a minireview. Ann Microbiol 52:103–117

    Google Scholar 

  • Teniola OD, Addo PA, Brost IM, Farber P, Jany KD, Alberts JF, van Zyl WH, Steyn PS, Holzapfel WH (2005) Degradation of aflatoxin B1 by cell-free extracts of Rhodococcus erythropolis and Mycobacterium fluoranthenivorans sp nov DSM44556T. Int J Food Microbiol 105:111–117

    Article  CAS  Google Scholar 

  • Van VT, Berge O, Ngô Kê S, Balandreau J, Heulin T (2000) Repeated beneficial effects of rice inoculation with a strain of Burkholderia vietnamiensison early and late yield components in low fertility sulphate acid soils of Vietnam. Plant Soil 218:273–284

    Article  CAS  Google Scholar 

  • Wilson CL, Wisniewski ME (1989) Biological control of postharvest diseases of fruits and vegetables: an emerging technology. Annu Rev Phytopathol 27:425–441

    Article  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the Chinese Academy of Agricultural Sciences (CAAS) for funding this work (the Project No. 1610242018033). And also we thank Tsingke Biotech Co., Ltd. (Changsha, China) for sequencing the PCR products of 16S rDNA gene sequences.

Author information

Authors and Affiliations

Authors

Contributions

XY and XC designed and conducted the work. ZS, XZ, and JZ finished the experiment including lab work, data analysis, and manuscript writing. SM corrected and approved the final manuscript.

Corresponding author

Correspondence to Shiyong Mei.

Ethics declarations

Conflict of interest

No conflict of interest was declared.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Chen, X., Song, Z. et al. Antifungal, plant growth-promoting, and mycotoxin detoxication activities of Burkholderia sp. strain XHY-12. 3 Biotech 10, 158 (2020). https://doi.org/10.1007/s13205-020-2112-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-020-2112-y

Keywords

Navigation