Skip to main content
Log in

New disease-resistant, seedless grapes are developed using embryo rescue and molecular markers

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

Improving the operation of embryo rescue technology is a highly efficient way to breed new high-quality cultivars of seedless, disease-resistant grapes when using a stenospermocarpic Vitis vinifera L. (female parents) hybrid with Chinese wild Vitis (male parents). In this study, sampling time had a significant effect on embryo recovery. Four crosses were investigated to improve the embryo rescue efficiency by determining the best sampling time, which was found to be 40, 50, 55, and 57 days after pollination (DAP) for ‘Flame seedless’ × ‘Ruby seedless’, ‘Kunxiang seedless’ × ‘Flame seedless’, ‘Ruby seedless’ self-pollination and ‘Ruby seedless’ × ‘Flame seedless’, respectively. The highest percentage embryo germination ranged from 60.83 to 89.10% for four cross-combinations when the embryo was germinated on woody plant medium (WPM), with 1.0-μM thidiazuron (TDZ, a potent cytokinin). For 11 cross-combinations, the embryo recovery rate varied from 4.8 to 29.6% and the plant development rate varied from 17.1 to 78.9%. ‘Ruby seedless’ was the best female parent followed by ‘Flame seedless’. The Grape Seedless gene Probe 1 (GSLP1) and SCF27 molecular markers were used to assist the identification of the seedless traits of the 388 progeny. A total of 309 plantlets were amplified, with the specific bands at 569-bp and 2k-bp being preliminarily considered as seedless. The S382-615 marker was used to identify the downy mildew resistance of the ‘Ruby seedless’ × ‘Beichun’ cross. Two F1 progeny were amplified, with the specific band at 615-bp being identified as downy mildew resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

IAA:

Indole-3-acetic acid

6-BA:

6-Benzyladenine

MS:

Murashige and Skoog (1962) medium

WPM:

Woody plant medium

AC:

Activated charcoal

TDZ:

Thidiazuron

PGR:

Plant growth regulator

DAP:

Days after pollination

SCAR:

Sequence characterized amplified region

RAPD:

Random amplified polymorphic DNA

References

  • Abdel-Rahman M (1977) Patterns of hormones, respiration and ripening enzymes during development, maturation and ripening of cherry tomato fruits. Physiol Plant 39:115–118

    Article  CAS  Google Scholar 

  • Adam-Blondon AF, Lahogue-Esnault F, Bouquet A et al (2001) Usefulness of two SCAR markers for marker-assisted selection of seedless grapevine cultivars. Vitis 40(3):147–156

    CAS  Google Scholar 

  • Agüero CB, Riquelme C, Tizio R (1995) Embryo rescue from seedless grapevines (Vitis vinifera L.) treated with growth retardants. Vitis 34:73–76

    Google Scholar 

  • Akkurt M, Welter L, Maul E, Töpfer R, Zyprian E (2007) Development of SCAR markers linked to powdery mildew (Uncinula necator) resistance in grapevine (Vitis vinifera L. and Vitis sp.). Mol Breed 19:103–111. https://doi.org/10.1007/s11032-006-9047-9

    Article  CAS  Google Scholar 

  • Akkurt M, Çakır A, Shidfar M, Çelikkol BP, Söylemezoğlu G (2012) Using SCC8, SCF27 and VMC7f2 markers in grapevine breeding for seedlessness via marker assisted selection. Genet Mol Res 11:2288–2294. https://doi.org/10.4238/2012.August.13.2

    Article  CAS  PubMed  Google Scholar 

  • Akkurt M, Tahmaz H, Veziroglu S (2019) Recent developments in seedless grapevine breeding. S Afr J Enol Vitic 40:1. https://doi.org/10.21548/42-2-3342

    Article  Google Scholar 

  • Alleweldt G, Possingham JV (1988) Progress in grapevine breeding. Theor Appl Genet 75:669–673

    Article  Google Scholar 

  • Amaral ALD, Oliveira PRDD, Czermainski ABC, Camargo UA (2001) Embryo growth stages on plant obtention from crosses between seedless grape parents. Revista Brasileira De Fruticultura 23:647–651

    Article  Google Scholar 

  • Bennici S et al (2019) Influence of the genetic background on the performance of molecular markers linked to seedlessness in table grapes. Sci Hortic 252:316–323. https://doi.org/10.1016/j.scienta.2019.03.060

    Article  Google Scholar 

  • Bergamini C et al (2013) Validation assay of p3_VvAGL11 marker in a wide range of genetic background for early selection of stenospermocarpy in Vitis vinifera L. Mol Biotechnol 54:1021–1030. https://doi.org/10.1007/s12033-013-9654-8

    Article  CAS  PubMed  Google Scholar 

  • Bouquet A, Danglot Y (1996) Inheritance of seedlessness in grapevine (Vitis vinifera L.). Vitis 35:35–42

    Google Scholar 

  • Bouquet A, Davis HP, Danglot Y, Rennes C (1989) Culture in vitro d’ovules et d’embryons de vigne (Vitis vinifera L.) appliquée à la sélection de variétés de raisins de table sans pépins. Agronomie 9:565–574

    Article  Google Scholar 

  • Burger P, Goussard PG (1996) In vitro culture of ovules and embryos from seedless grapes (Vitis vinifera L.). S Afr J Enol Vitic 17:31–37. https://doi.org/10.21548/17-2-2255

    Article  Google Scholar 

  • Cain DW, Emershad RL (1983) In-ovulo embryo culture and seedling development of seeded and seedless grapes (Vitis vinifera L.). Vitis 22:9–14

    Google Scholar 

  • Conner PJ, Gunawan G, Clark JR (2018) Characterization of the p3-VvAGL11 marker for stenospermocarpic seedlessness in Euvitis × Muscadinia grape hybrid progenies. J Am Soc Hortic Sci 143:167–172. https://doi.org/10.21273/jashs04366-18

    Article  Google Scholar 

  • Costantini L, Battilana J, Lamaj F, Fanizza G, Grando MS (2008) Berry and phenology-related traits in grapevine (Vitis vinifera L.): from quantitative trait loci to underlying genes. BMC Plant Biol 8:38. https://doi.org/10.1186/1471-2229-8-38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crane JC (1964) Growth substances in fruit setting and development. Ann Rev Plant Physiol 15:303–326

    Article  CAS  Google Scholar 

  • Emershad RL, Ramming DW (1994) Somatic embryogenesis and plant development from immature zygotic embryos of seedless grapes (Vitis vinifera L.). Plant Cell Rep 14:6–12. https://doi.org/10.1007/BF00233289

    Article  CAS  PubMed  Google Scholar 

  • Emershad RL, Ramming DW, Serpe MD (1989) In ovulo embryo development and plant formation from stenospermic genotypes of Vitis vinifera. Am J Bot 76:397–402

    Article  Google Scholar 

  • Fatahi R, Zamani Z, Ebadi A, Mehlenbacher SA (2004) The inheritance of seedless SCC8-SCAR and SSRs loci alleles in progeny of ‘Muscat Hamburg’ x ‘Bidane Quermez’ grapes. In: International Society for Horticultural Science (ISHS), Leuven, Belgium, pp 329-335. https://doi.org/10.17660/actahortic.2004.652.42

  • Gray DJ, Mortensen JA, Benton CM, Durham RE, Moore GA (1990) Ovule culture to obtain progeny from hybrid seedless bunch grapes. J Am Soc Hortic Sci 115:1019–1024

    Article  Google Scholar 

  • Gribaudo I, Zanetti R, Botta R, Vallania R, Eynard I (1993) In ovulo embryo culture of stenospermocarpic grapes. Vitis 32:9–14

    CAS  Google Scholar 

  • Guo H, Wang Y, Zhang J, Pan X, Tang D, Tian L (2005) Development of resistant and seedless grape germplasms by embryo rescue and marker-assisted. Acta Botanica Boreali-Occidentalia Sinica 25:2395–2401

    CAS  Google Scholar 

  • He P, Wang Y, Wang G, Ren Z, He C (1991) The studies on the disease-resistance of Chinese wild Vitis species. Scientia Agricultura Sinica 24:50–56

    Google Scholar 

  • Hiramatsu M, Wakana A, Park SM, Fukudome I (2003) Production of triploid plants from crosses between diploid and tetraploid grapes (Vitis complex) through immature seed culture and subsequent embryo culture. J Fac Agric 48:51–57

    Google Scholar 

  • Huetteman CA, Preece JE (1993) Thidiazuron: a potent cytokinin for woody plant tissue culture. Plant Cell Tissue Organ Cult 33:105–119. https://doi.org/10.1007/bf01983223

    Article  CAS  Google Scholar 

  • Ji W, Wang Y (2013) Breeding for seedless grapes using Chinese wild Vitis spp. II. In vitro embryo rescue and plant development. J Sci Food Agric 93:3870–3875. https://doi.org/10.1002/jsfa.6342

    Article  CAS  PubMed  Google Scholar 

  • Ji W, Li ZQ, Zhou Q, Yao WK, Wang YJ (2013) Breeding new seedless grape by means of in vitro embryo rescue. Genet Mol Res 12:859–869. https://doi.org/10.4238/2013.March.26.1

    Article  CAS  PubMed  Google Scholar 

  • Kim G et al (2008) Identification of AFLP and RAPD markers linked to anthracnose resistance in grapes and their conversion to SCAR markers. Plant Breed 127:418–423. https://doi.org/10.1111/j.1439-0523.2008.01488.x

    Article  CAS  Google Scholar 

  • Korpás A, Baránek M, Pidra M, Hradilík J (2015) Behaviour of two SCAR markers for seedlessness within central European varieties of grapevine. Vitis 48:33–42

    Google Scholar 

  • Kumar R, Khurana A, Sharma AK (2014) Role of plant hormones and their interplay in development and ripening of fleshy fruits. J Exp Bot 65:4561–4575. https://doi.org/10.1093/jxb/eru277

    Article  CAS  PubMed  Google Scholar 

  • Lahogue F, This P, Bouquet A (1998) Identification of a codominant scar marker linked to the seedlessness character in grapevine. Theor Appl Genet 97:950–959. https://doi.org/10.1007/s001220050976

    Article  CAS  Google Scholar 

  • Ledbetter CA, Ramming DW (1989) Seedlessness in grapes. Hortic Rev 11:159–184

    Google Scholar 

  • Li S, Wen L, Zhang F, Luo F, Yang M, Zhang Y, Huang D (1983) A new cold and disease resistant grape cultivar-Beichun. Chin Bull Bot 2:28–30

    Google Scholar 

  • Li G, Ji W, Wang G, Zhang J, Wang Y (2014) An improved embryo-rescue protocol for hybrid progeny from seedless Vitis vinifera grapes × wild Chinese Vitis species. Vitro Cell Dev Biol - Plant 50:110–120. https://doi.org/10.1007/s11627-013-9543-7

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Li T, Wang Y, Xu Y (2015) Breeding new seedless grapes using in ovulo embryo rescue and marker-assisted selection. Vitro Cell Dev Biol- Plant 51:241–248. https://doi.org/10.1007/s11627-015-9677-x

    Article  CAS  Google Scholar 

  • Li T, Li Z, Yin X, Guo Y, Wang Y, Xu Y (2018) Improved in vitro Vitis vinifera L. embryo development of F1 progeny of ‘Delight’ × ‘Ruby seedless’ using putrescine and marker-assisted selection. Vitro Cell Dev Biol- Plant 54:291–301. https://doi.org/10.1007/s11627-018-9895-0

    Article  Google Scholar 

  • Liu H, Li H (2004) Studies on the resistance of Uncinula necator and Plasmopara viticola of Vitis vinifera. J Northeast Agric Univ 35:302–308

    Google Scholar 

  • Liu SM, Sykes SR, Clingeleffer PR (2003) Improved in ovulo embryo culture for stenospermocarpic grapes (Vitis vinifera L.). Aust J Agric Res 54:869–876. https://doi.org/10.1071/Ar03053

    Article  CAS  Google Scholar 

  • Liu Q, Zhang J, Wang Y, Yu D, Xia H (2015) Breeding for cold-resistant, seedless grapes from Chinese wild using embryo rescue. NZ J Crop Hortic Sci 44:1–16

    Google Scholar 

  • Malabarba J et al (2017) The MADS-box gene Agamous-like 11 is essential for seed morphogenesis in grapevine. J Exp Bot 68:1493–1506. https://doi.org/10.1093/jxb/erx025

    Article  CAS  PubMed  Google Scholar 

  • Malabarba J, Buffon V, Mariath JEA, Maraschin FS, Margis-Pinheiro M, Pasquali G, Revers LF (2018) Manipulation of VviAGL11 expression changes the seed content in grapevine (Vitis vinifera L.). Plant Sci 269:126–135. https://doi.org/10.1016/j.plantsci.2018.01.013

    Article  CAS  PubMed  Google Scholar 

  • Mejía N, Hinrichsen P (2003) A new, highly assertive scar marker potentially useful to assist selection for seedlessness in table grape breeding. Acta Hort 603:559–564

    Article  Google Scholar 

  • Mejía N et al (2011) Molecular, genetic and transcriptional evidence for a role of VvAGL11 in stenospermocarpic seedless in grapevine. BMC Plant Biol. https://doi.org/10.1186/1471-2229-11-57

    Article  PubMed  PubMed Central  Google Scholar 

  • Notsuka K, Tsuru T, Shiraishi M (2001) Seedless-seedless grape hybridization via In-ovlue embryo culture. J Jpn Soc Hortic Sci 70:9

    Article  Google Scholar 

  • Ocarez N, Mejía N (2016) Suppression of the D-class MADS-box AGL11 gene triggers seedlessness in fleshy fruits. Plant Cell Rep 35:239–254. https://doi.org/10.1007/s00299-015-1882-x

    Article  CAS  PubMed  Google Scholar 

  • Ozga JA, Reinecke DM (2003) Hormonal interactions in fruit development. J Plant Growth Regul 22:73–81. https://doi.org/10.1007/s00344-003-0024-9

    Article  CAS  Google Scholar 

  • Park SM, Hiramatsu M, Wakana A (1999) Aneuploid plants derived from crosses with triploid grapes through immature seed culture and subsequent embryo culture. Plant Cell Tissue Organ Cult 59:125–133. https://doi.org/10.1023/A:1006477422833

    Article  Google Scholar 

  • Pellerone FI, Kj Edwards, Thomas MR (2001) Grapevine microsatellite repeats: isolation, characterisation and use for genotyping of grape germplasm from Southern Italy. Vitis 40:179–186

    CAS  Google Scholar 

  • Pommer CV, Ramming DW, Emershad RL (1995) Influence of grape genotype, ripening season, seed trace size, and culture date on in ovule embryo development and plant formation. Bragantia 54:237–249

    Article  Google Scholar 

  • Ramming DW, Emershad RL, Tarailn R (2000) A stenospermocarpic, seedless Vitis vinifera × Vitis rotundifolia hybrid developed by embryo rescue. HortSci 35:732–734

    Article  Google Scholar 

  • Royo C et al (2018) The major origin of seedless grapes is associated with a missense mutation in the MADS-box gene VviAGL11. Plant Physiol 177:1234–1253. https://doi.org/10.1104/pp.18.00259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma R, Kaur R (1996) Embryo rescue in plants-a review. Euphytica 89:325–337

    Google Scholar 

  • Singh Z, Brar SJ (1992) In vivo development of ovule in seedless and seeded cultivars of grapes (Vitis vinifera L.)—a particular reference to in ovulo embryo culture. Vitis 31:77–82

    Google Scholar 

  • Spiegel-Roy P, Sahar N, Baron J, Lavi U (1985) In vitro culture and plant formation from grape cultivars with abortive ovules and seeds. J Am Soc Hortic Sci 110:109–112

    Google Scholar 

  • Stout AB (1936) Seedlessness in grapes. Hortic Rev 11:159–184

    Google Scholar 

  • Tang D, Wang Y, Cai J, Zhao R (2009) Effects of exogenous application of plant growth regulators on the development of ovule and subsequent embryo rescue of stenospermic grape (Vitis vinifera L.). Sci Hortic 120:51–57. https://doi.org/10.1016/j.scienta.2008.09.018

    Article  CAS  Google Scholar 

  • Tian L, Wang Y (2008) Seedless grape breeding for disease resistance by using embryo rescue. Vitis 47:15–19

    CAS  Google Scholar 

  • Tian L, Wang Y, Niu L, Tang D (2008) Breeding of disease-resistant seedless grapes using Chinese wild Vitis spp. I. In vitro embryo rescue and plant development. Sci Hortic 117:136–141. https://doi.org/10.1016/j.scienta.2008.03.024

    Article  Google Scholar 

  • Valdez JG (2005) Immature embryo rescue of grapevine (Vitis vinifera L.) after an extended period of seed trace culture. Vitis 44:17–23

    Google Scholar 

  • Wan Y, Schwaninger H, Li D, Simon CJ, Wang Y, He P (2008) The eco-geographic distribution of wild grape germplasm in China. Vitis 47:77–80

    Google Scholar 

  • Wang YJ, Lamikanra O (2002) Application and synthesis on the DNA probe for detecting seedless genes in grapevine. J NW Sci-Tech Univ Agric For 30:42–46

    CAS  Google Scholar 

  • Wang Y, Liu Y, He P, Lamikanra O, Lu J (1998) Resistance of Chinese Vitis species to Elsinoë ampelina (de Bary) shear. HortSci 33:123–126. https://doi.org/10.21273/Hortsci.33.1.123

    Article  Google Scholar 

  • Wang Y, Zhang J, Wu X, Liu N (2010) Identification of disease resistance of seedless grape embryo-rescue seedlings. J NW Agric Univ 38:145–152

    Google Scholar 

  • Yu Y, Zhang Y, Yin L, Lu J (2012) The mode of host resistance to Plasmopara viticola infection of grapevines. Phytopathology 102:1094–1101. https://doi.org/10.1094/phyto-02-12-0028-r

    Article  PubMed  Google Scholar 

  • Zhang J, Wang Y, Zhou B, Xu W, Zhang Y (2008a) Cloning and sequence analysis of RAPD markers linked to the resistant powdery mildew genes in Chinese wild vitis. J Agric Biotechnol 16:481–485

    CAS  Google Scholar 

  • Zhang Y, Zhang J, Wang Y (2008b) Screening the RAPD markers linked to the gene resistant to downy mildew in Chinese wild species of Vitis. J Fruit Sci 25:816–820

    CAS  Google Scholar 

  • Zhang J, Wang Y, Wang Y, Zhang Y (2010a) Marker-assisted selection for hybrids from cross between seedless and disease-resistant grape. J NE Agric Univ 41:55–63

    Google Scholar 

  • Zhang J, Wang Y, Yang Y, Yu H (2010b) Synthesis and application on DNA probe for detecting anthracnose-resistance gene in grape. J Agric Biotechnol 18:985–992

    CAS  Google Scholar 

Download references

Acknowledgements

This research at the State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, was supported by the earmarked fund for China Agriculture Research Systems for the grape industry (Grant No. CARS-29-yc-3). The authors specifically thank Dr Alexander (Sandy) Lang from RESCRIPT Co. (New Zealand) for useful language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuejin Wang.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

13205_2019_1993_MOESM1_ESM.doc

Supplementary material 1: Supplementary Fig. S1. Analysis of amplification by the GSLP1 marker showing the linkage to seedlessness in parents. M. DNA ladder marker (Trans DNA 2K plus), (1) ‘Beichun’, (2) ‘Shuangyou’, (3) ‘Zixiang’, (4) ‘Centennial seedless’, (5) ‘Crimson seedless’, (6) ‘Flame seedless’, (7) ‘Kunxiang’, (8) ‘Ruby seedless’, (9) ‘Huozhouhongyu’. (+) the 569-bp specific band is present; (−) the 569-bp specific band is absent. Supplementary Fig. S2. Analysis of the amplification by the SCF27 marker showing the linkage to seedlessness in parents. M. DNA ladder marker (Trans DNA 2K plus), (1) ‘Beichun’, (2) ‘Shuangyou’, (3) ‘Zixiang’, (4) ‘Centennial seedless’, (5) ‘Crimson seedless’, (6) ‘Flame seedless’, (7) ‘Kunxiang’, (8) ‘Ruby seedless’, (9) ‘Huozhouhongyu’. (+) the 569-bp specific band is present; (−) the 569-bp specific band is absent. Supplementary Fig. S3. Amplification results for GSLP1 linked to the seedless gene in ‘Flame seedless’ × ‘Shuangyou’ hybrid progeny. M. DNA ladder marker (Trans DNA 2K plus), (1) ‘Flame seedless’, (2) ‘Shuangyou’, (3–25) the 23 hybrid progeny of ‘Flame seedless × Shuangyou’. (+) the 569-bp specific band is present, (−) the 569-bp specific band is absent. Supplementary Fig. S4. Amplification results for SCF27 linked to the seedless gene in ‘Kunxiang seedless’ × ‘Flame seedless’ hybrid progeny. M. DNA ladder marker (Trans DNA 2K plus), (1) ‘Kunxiang seedless’, (2) ‘Flame seedless’, (3–28) the 26 progeny of ‘Kunxiang seedless’ × ‘Flame seedless’. (+) the 2k-bp specific band is present; (−) the 2k-bp specific band is absent. Supplementary Fig. S5. Amplification results for SCF27 linked to the seedless gene in ‘Ruby seedless’ × ‘Flame seedless’ hybrid progeny. M. DNA ladder marker (Trans DNA 2K plus), (1) ‘Ruby seedless’, (2) ‘Flame seedless’, (3–341) the 339 progenies of the ‘Ruby seedless’ × ‘Flame seedless’. (+) the 2k-bp specific band is present; (–) the 2k-bp specific band is absent. Supplementary Fig. S6. Analysis of the amplification by the S382-615 marker showing linkage to disease-resistance in parents. M. DNA ladder marker (Trans DNA 2K plus), (1) ‘Beichun’, (2) ‘Shuangyou’, (3) ‘Zixiang’, (4) ‘Centennial seedless’, (5) ‘Crimson seedless’, (6) ‘Flame seedless’, (7) ‘Kunxiang’, (8) ‘Ruby seedless’, (9) ‘Huozhouhongyu’. (+) the 569-bp specific band is present; (−) the 569-bp specific band is absent. Supplementary Fig. S7. Amplification results for S382-615 linked to disease-resistance in ‘Ruby seedless’ × ‘Beichun’ hybrid progeny. M. DNA ladder marker (Trans DNA 2K plus), (1–34) The 34 progenies of the ‘Ruby seedless’ × ‘Beichun’. (+) the 2k-bp specific band is present; (−) the 2k-bp specific band is absent. (DOC 1978 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Li, Z., Zhao, Y. et al. New disease-resistant, seedless grapes are developed using embryo rescue and molecular markers. 3 Biotech 10, 4 (2020). https://doi.org/10.1007/s13205-019-1993-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-019-1993-0

Keywords

Navigation