Skip to main content
Log in

Photothermal effects in small gold nanorod aggregates for therapeutic applications

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

Proximity of the metal nanoparticles enhance the plasmonic coupling and shifts the resonance. This article presents a numerical study of the photothermal effect in aggregates of small gold nanorods considering the ordered as well as random aggregates. In the ordered aggregates, there is lateral coupling which causes blueshifts in the plasmonic resonance, while in the random aggregates, there are redshifts in the plasmonic resonance. The plasmon response of latter could be tailored up to the second infrared biological therapeutic window. It has been observed that the aggregates show higher absorption power, and therefore, higher temperature rise compared to the single gold nanorod or monodispersive nanorods. The absorption resonance peak position of the random aggregate depends on the incident and polarization angles of the incident light. The aggregation of the nanoparticles often inherently occurs in the biological medium which affects the photothermal process. This study helps to understand the photothermal heating of nanoparticle aggregates and the use of the optimal light source concerning the absorption peak of the aggregates suspension for therapeutic uses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adeyemi OS, Sulaiman FA (2015) Evaluation of metal nanoparticles for drug delivery systems. J Biomed Res 29(2):145

    Google Scholar 

  • Aioub M, Panikkanvalappil SR, El-Sayed MA (2017) Platinum-coated gold nanorods: efficient reactive oxygen scavengers that prevent oxidative damage toward healthy, untreated cells during plasmonic photothermal therapy. ACS Nano 11(1):579–586

    Article  CAS  Google Scholar 

  • Alizadeh M, Hosseinzadeh K, Ganji D (2019) Investigating the effects of hybrid nanoparticles on solid-liquid phase change process in a y-shaped fin-assisted lhtess by means of fem. J Mol Liq 287:110931

    Article  CAS  Google Scholar 

  • Apyari VV, Gorbunova MO, Shevchenko AV, Furletov AA, Volkov PA, Garshev AV, Dmitrienko SG, Zolotov YA (2018) Towards highly selective detection using metal nanoparticles: a case of silver triangular nanoplates and chlorine. Talanta 176:406–411

    Article  CAS  Google Scholar 

  • Babu A, Templeton AK, Munshi A, Ramesh R (2013) Nanoparticle-based drug delivery for therapy of lung cancer: progress and challenges, J Nanomater

  • Bachelier G, Russier-Antoine I, Benichou E, Jonin C, Del Fatti N, Vallée F, Brevet P-F (2008) Fano profiles induced by near-field coupling in heterogeneous dimers of gold and silver nanoparticles. Phys Rev Lett 101(19):197401

    Article  CAS  Google Scholar 

  • Baffou G (2017) Thermoplasmonics, heating metal nanoparticles using light

  • Baffou G, Quidant R (2013) Thermo-plasmonics: using metallic nanostructures as nano-sources of heat. Laser Photon Rev 7(2):171–187

    Article  CAS  Google Scholar 

  • Baffou G, Quidant R, García de Abajo FJ (2010) Nanoscale control of optical heating in complex plasmonic systems. ACS Nano 4(2):709–716

    Article  CAS  Google Scholar 

  • Chen X, Chen Y, Yan M, Qiu M (2012) Nanosecond photothermal effects in plasmonic nanostructures. ACS Nano 6(3):2550–2557

    Article  CAS  Google Scholar 

  • Chen Z, Fan H, Li J, Tie S, Lan S (2017) Photothermal therapy of single cancer cells mediated by naturally created gold nanorod clusters. Opt Expr 25(13):15093–15107

    Article  Google Scholar 

  • Chen M, Luo W, Xu Z, Zhang X, Xie B, Wang G, Han M (2019) An ultrahigh resolution pressure sensor based on percolative metal nanoparticle arrays. Nat Commun 10(1):1–9

    CAS  Google Scholar 

  • Choi WI, Kim J-Y, Kang C, Byeon CC, Kim YH, Tae G (2011) Tumor regression in vivo by photothermal therapy based on gold-nanorod-loaded, functional nanocarriers. ACS Nano 5(3):1995–2003

    Article  CAS  Google Scholar 

  • Cottancin E, Celep G, Lermé J, Pellarin M, Huntzinger J, Vialle J, Broyer M (2006) Optical properties of noble metal clusters as a function of the size: comparison between experiments and a semi-quantal theory. Theor Chem Acc 116(4):514–523

    Article  CAS  Google Scholar 

  • de Abajo FG (1999) Interaction of radiation and fast electrons with clusters of dielectrics: a multiple scattering approach. Phys Rev Lett 82(13):2776

    Article  Google Scholar 

  • De Abajo FG, Howie A (2002) Retarded field calculation of electron energy loss in inhomogeneous dielectrics. Phys Rev B 65(11):115418

    Article  CAS  Google Scholar 

  • Dionne JA, Atwater HA (2012) Plasmonics: metal-worthy methods and materials in nanophotonics. Mrs Bull 37(8):717–724

    Article  CAS  Google Scholar 

  • Donner JS, Baffou G, McCloskey D, Quidant R (2011) Plasmon-assisted optofluidics. Acs Nano 5(7):5457–5462

    Article  CAS  Google Scholar 

  • Dutta S, Strack G, Kurup P (2019) Gold nanostar electrodes for heavy metal detection. Sens Actuators B Chem 281:383–391

    Article  CAS  Google Scholar 

  • Fan F-R, Liu D-Y, Wu Y-F, Duan S, Xie Z-X, Jiang Z-Y, Tian Z-Q (2008) Epitaxial growth of heterogeneous metal nanocrystals: from gold nano-octahedra to palladium and silver nanocubes. J Am Chem Soc 130(22):6949–6951

    Article  CAS  Google Scholar 

  • Fang Y, Sun M (2015) Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits. Light Sci Appl 4(6):e294–e294

    Article  CAS  Google Scholar 

  • Girard C (2005) Near fields in nanostructures. Rep Prog Phys 68(8):1883

    Article  Google Scholar 

  • Girard C, Dujardin E, Baffou G, Quidant R (2008) Shaping and manipulation of light fields with bottom-up plasmonic structures. New J Phys 10(10):105016

    Article  CAS  Google Scholar 

  • Gómez-Villarejo R, Martín EI, Navas J, Sánchez-Coronilla A, Aguilar T, Gallardo JJ, Alcántara R, Delos Santos D, Carrillo-Berdugo I, Fernández-Lorenzo C (2017) Ag-based nanofluidic system to enhance heat transfer fluids for concentrating solar power: nano-level insights. Appl Energy 194:19–29

    Article  CAS  Google Scholar 

  • Guddala S, Kamanoor SA, Chiappini A, Ferrari M, Desai NR (2012) Experimental investigation of photonic band gap influence on enhancement of Raman-scattering in metal-dielectric colloidal crystals. J Appl Phys 112(8):084303

    Article  CAS  Google Scholar 

  • Guddala S, Kumar R, Ramakrishna SA (2015) Thermally induced nonlinear optical absorption in metamaterial perfect absorbers. Appl Phys Lett 106(11):111901

    Article  CAS  Google Scholar 

  • Guddala S, Rao DN, Ramakrishna SA (2016) Resonant enhancement of Raman scattering in metamaterials with hybrid electromagnetic and plasmonic resonances. J Opt 18(6):065104

    Article  CAS  Google Scholar 

  • Guddala S, Dwivedi VK, Vijaya Prakash G, Narayana Rao D (2013) Raman scattering enhancement in photon-plasmon resonance mediated metal-dielectric microcavity. J Appl Phys 114(22):224309

    Article  CAS  Google Scholar 

  • Gu X, Timchenko V, Heng Yeoh G, Dombrovsky L, Taylor R (2018) The effect of gold nanorods clustering on near-infrared radiation absorption. Appl Sci 8(7):1132

    Article  CAS  Google Scholar 

  • Janib SM, Moses AS, MacKay JA (2010) Imaging and drug delivery using theranostic nanoparticles. Adv Drug Del Rev 62(11):1052–1063

    Article  CAS  Google Scholar 

  • Johnson PB, Christy R-W (1972) Optical constants of the noble metals. Phys Rev B 6(12):4370

    Article  CAS  Google Scholar 

  • Kreibig U, Vollmer M (2013) Opt Prop Metal Clusters, vol 25. Springer Science & Business Media, Berlin

    Google Scholar 

  • Larsson EM, Alegret J, Käll M, Sutherland DS (2007) Sensing characteristics of nir localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors. Nano Lett 7(5):1256–1263

    Article  CAS  Google Scholar 

  • Lee J, Kim S, Lee J, Yang D, Park BC, Ryu S, Park I (2014) A stretchable strain sensor based on a metal nanoparticle thin film for human motion detection. Nanoscale 6(20):11932–11939

    Article  CAS  Google Scholar 

  • Lermé J, Palpant B, Prével B, Cottancin E, Pellarin M, Treilleux M, Vialle J, Perez A, Broyer M (1998) Optical properties of gold metal clusters: a time-dependent local-density-approximation investigation. Eur Phys J D-Atomic Mol Opt Plasma Phys 4(1):95–108

    Google Scholar 

  • Li JL, Day D, Gu M (2008) Ultra-low energy threshold for cancer photothermal therapy using transferrin-conjugated gold nanorods. Adv Mater 20(20):3866–3871

    Article  CAS  Google Scholar 

  • Lin H-Y, Huang C-H, Chang C-H, Lan Y-C, Chui H-C (2010) Direct near-field optical imaging of plasmonic resonances in metal nanoparticle pairs. Opt Exp 18(1):165–172

    Article  CAS  Google Scholar 

  • Maier SA (2007) Plasmonics: fundamentals and applications. Springer Science & Business Media, Berlin

    Book  Google Scholar 

  • Martin OJ, Girard C, Dereux A (1995) Generalized field propagator for electromagnetic scattering and light confinement. Phys Rev Lett 74(4):526

    Article  CAS  Google Scholar 

  • Mishchenko MI, Travis LD, Lacis AA (2002) Scattering, absorption, and emission of light by small particles. Cambridge University Press, Cambridge

    Google Scholar 

  • Mohsin AS, Salim MB (2018) Probing the plasmon coupling, quantum yield, and effects of tip geometry of gold nanoparticle using analytical models and fdtd simulation. IEEE Photon J 10(3):1–10

    Article  Google Scholar 

  • Multiphysics C (1998) Introduction to COMSOL multiphysics®, COMSOL Multiphysics, Burlington, MA. Accessed Feb 9 2018

  • Myroshnychenko V, Rodríguez-Fernández J, Pastoriza-Santos I, Funston AM, Novo C, Mulvaney P, Liz-Marzán LM, De Abajo FJG (2008) Modelling the optical response of gold nanoparticles. Chem Soc Rev 37(9):1792–1805

    Article  CAS  Google Scholar 

  • Nam J, Won N, Jin H, Chung H, Kim S (2009) pH-induced aggregation of gold nanoparticles for photothermal cancer therapy. J Am Chem Soc 131(38):13639–13645

    Article  CAS  Google Scholar 

  • Nishijima Y, Balčytis A, Naganuma S, Seniutinas G, Juodkazis S (2019) Kirchhoff’s metasurfaces towards efficient photo-thermal energy conversion. Sci Rep 9(1):1–9

    Article  CAS  Google Scholar 

  • Pan L, Liu J, Shi J (2017) Nuclear-targeting gold nanorods for extremely low nir activated photothermal therapy. ACS Appl Mater interfaces 9(19):15952–15961

    Article  CAS  Google Scholar 

  • Pattani VP, Shah J, Atalis A, Sharma A, Tunnell JW (2015) Role of apoptosis and necrosis in cell death induced by nanoparticle-mediated photothermal therapy. J Nanopart Res 17(1):1–11

    Article  CAS  Google Scholar 

  • Radhakrishnan A, Murugesan DV (2014) Calculation of the extinction cross section and lifetime of a gold nanoparticle using fdtd simulations. In: AIP Conference Proceedings, Vol. 1620, American Institute of Physics, pp. 52–57

  • Roldan Cuenya B (2013) Metal nanoparticle catalysts beginning to shape-up. Acc Chem Res 46(8):1682–1691

    Article  CAS  Google Scholar 

  • Ruparelia JP, Chatterjee AK, Duttagupta SP, Mukherji S (2008) Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater 4(3):707–716

    Article  CAS  Google Scholar 

  • Scholten JD, Leal BC, Dupont J (2012) Transition metal nanoparticle catalysis in ionic liquids. ACS Cataly 2(1):184–200

    Article  CAS  Google Scholar 

  • Shen S, Tang H, Zhang X, Ren J, Pang Z, Wang D, Gao H, Qian Y, Jiang X, Yang W (2013) Targeting mesoporous silica-encapsulated gold nanorods for chemo-photothermal therapy with near-infrared radiation. Biomaterials 34(12):3150–3158

    Article  CAS  Google Scholar 

  • Shin D, Kang G, Gupta P, Behera S, Lee H, Urbas AM, Park W, Kim K (2018) Thermoplasmonic and photothermal metamaterials for solar energy applications. Adv Opt Mater 6(18):1800317

    Article  CAS  Google Scholar 

  • Skrabalak SE, Chen J, Sun Y, Lu X, Au L, Cobley CM, Xia Y (2008) Gold nanocages: synthesis, properties, and applications. Acc Chem Res 41(12):1587–1595

    Article  CAS  Google Scholar 

  • Soni S, Tyagi H, Taylor RA, Kumar A (2015) Experimental and numerical investigation of heat confinement during nanoparticle-assisted thermal therapy. Int Commun Heat Mass Transf 69:11–17

    Article  Google Scholar 

  • Sun M, Liu F, Zhu Y, Wang W, Hu J, Liu J, Dai Z, Wang K, Wei Y, Bai J et al (2016) Salt-induced aggregation of gold nanoparticles for photoacoustic imaging and photothermal therapy of cancer. Nanoscale 8(8):4452–4457

    Article  CAS  Google Scholar 

  • Syed AM, Sindhwani S, Wilhelm S, Kingston BR, Lee DS, Gommerman JL, Chan WC (2017) Three-dimensional imaging of transparent tissues via metal nanoparticle labeling. J Am Chem Soc 139(29):9961–9971

    Article  CAS  Google Scholar 

  • Tang S, Tong P, Lu W, Chen J, Yan Z, Zhang L (2014) A novel label-free electrochemical sensor for hg2+ based on the catalytic formation of metal nanoparticle. Biosens Bioelectr 59:1–5

    Article  CAS  Google Scholar 

  • Ungureanu C, Kroes R, Petersen W, Groothuis TA, Ungureanu F, Janssen H, van Leeuwen FW, Kooyman RP, Manohar S, van Leeuwen TG (2011) Light interactions with gold nanorods and cells: implications for photothermal nanotherapeutics. Nano Lett 11(5):1887–1894

    Article  CAS  Google Scholar 

  • Vines JB, Yoon J-H, Ryu N-E, Lim D-J, Park H (2019) Gold nanoparticles for photothermal cancer therapy. Front Chem 7:167

    Article  CAS  Google Scholar 

  • Wang Y, Black KC, Luehmann H, Li W, Zhang Y, Cai X, Wan D, Liu S-Y, Li M, Kim P et al (2013) Comparison study of gold nanohexapods, nanorods, and nanocages for photothermal cancer treatment. ACS Nano 7(3):2068–2077

    Article  CAS  Google Scholar 

  • Wang H, Gao Y, Liu J, Li X, Ji M, Zhang E, Cheng X, Xu M, Liu J, Rong H et al (2019) Efficient plasmonic Au/CdSe nanodumbbell for photoelectrochemical hydrogen generation beyond visible region. Adv Energy Mater 9(15):1803889

    Article  CAS  Google Scholar 

  • Wang H, Yu H, Wang Y, Shan X, Chen H-Y, Tao N (2020) Phase imaging of transition from classical to quantum plasmonic couplings between a metal nanoparticle and a metal surface. Proc Natl Acad Sci 117(30):17564–17570

    Article  CAS  Google Scholar 

  • Wang Y, Gao Z, Han Z, Liu Y, Yang H, Akkin T, Hogan CJ, Bischof JC (2021) Aggregation affects optical properties and photothermal heating of gold nanospheres. Sci Rep 11(1):1–12

    CAS  Google Scholar 

  • Wiederrecht G (2004) Near-field optical imaging of noble metal nanoparticles. Eur Phys J Appl Phys 28(1):3–18

    Article  CAS  Google Scholar 

  • Xie B, Ma L, Zhao J, Liu L (2019) Dependent absorption property of nanoparticle clusters: an investigation of the competing effects in the near field. Opt Exp 27(8):A280–A291

    Article  CAS  Google Scholar 

  • Yan N, Xiao C, Kou Y (2010) Transition metal nanoparticle catalysis in green solvents. Coordination Chemistry Reviews 254(9–10):1179–1218

    Article  CAS  Google Scholar 

  • Yao Y, Zhang N, Liu X, Dai Q, Liu H, Wei Z, Tie S, Li Y, Fan H, Lan S (2018) A novel fast photothermal therapy using hot spots of gold nanorods for malignant melanoma cells. Nanomaterials 8(11):880

    Article  CAS  Google Scholar 

  • Yurkin MA, Hoekstra AG (2007) The discrete dipole approximation: an overview and recent developments. J Quant Spectrosc Radiat Transf 106(1–3):558–589

    Article  CAS  Google Scholar 

Download references

Acknowledgements

D.P. acknowledges the CSIR-India for the Nehru Science Postdoctoral Research Fellowship number HRDG/CSIR-Nehru PDF/EN, ES & PS/EMR-I/04/2019. D.P. and S.S. acknowledge the support of the CSIR-CSIO Chandigarh for hosting the research

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dheeraj Pratap.

Ethics declarations

Conflict of interest

On behalf of all the authors, the corresponding author states that there is no conflict of interest

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1. Aggregate projections

All considered six aggregates, ordered as well as random, are three-dimensional entities. The geometric structure projections in the xy, yz and zx planes are shown in the Fig. 10, 11.

Fig. 10
figure 10

Projected views of aggregates C1, C2, C3, C4, C5 and C6 in the xy, yz and zx planes used for computation. Each nanorod has length 25 nm and diameter 5 nm

Fig. 11
figure 11

Projected views of aggregate C7 in the xy, yz and zx planes used for computation. In this aggregate, three nanorods have the size 25 nm \(\times\) 5 nm (NR1, aspect ratio = 5), four have the size 23 nm \(\times\) 4.7 nm (NR2, aspect ratio = 4.9) and two have the size 21 nm \(\times\) 4.4 nm (NR3, aspect ratio =4.8)

Appendix 2. Model validation

Heat generation study of a 100 nm gold nanosphere situated in water was carried out as a benchmark problem. The permittivity of the gold was from Johnson and Christy (1972). All values of other parameters had been kept identical as used by Baffou et al. (2010). Figure 12 shows the computation of the normalized electric field intensity, energy density, temperature evolved in the nanosphere at incident wavelength 530 nm. The total absorption power of the nanosphere from 400 nm to 800 nm is also shown. The irradiance of the light was 1 mW/\(\mu\)m\(^2\). In our case, the maximum raised temperature was 52.2 \(^\circ\)C which was 55 \(^\circ\)C in Baffou case and 52.5 \(^\circ\)C in Chen et al. (2012). The maximum absorbed power was obtained 28.27 \(\mu\)W at 543 nm while the maximum absorbed power reported by Baffou was 20.5 \(\mu\)W at 530 nm and by Chen 21.45 \(\mu\)W at 540 nm.

Fig. 12
figure 12

Comparison validation of algorithm: a normalized electric field intensity, b absorbed power density, c temperature field and d total absorbed power of a gold nanosphere of 100 nm diameter at incident wavelength 530 nm and irradiance 1 mW/\(\mu\)m\(^2\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pratap, D., Shah, R.K., Khandekar, S. et al. Photothermal effects in small gold nanorod aggregates for therapeutic applications. Appl Nanosci 12, 2045–2058 (2022). https://doi.org/10.1007/s13204-022-02456-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-022-02456-z

Keywords

Navigation